Journal of Algorithms and Computation

4-total mean cordial labeling of spider graph

R. Ponraj ${ }^{* 1}$, S.Subbulakshmi ${ }^{\dagger 2}$, and M. Sivakumar ${ }^{\ddagger 3}$
${ }^{1}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627 412, Tamil Nadu, India.
${ }^{2}$ Research Scholor, Reg.No:20124012092023, Department of Mathematics, Manonmaniam Sundaranar University, Abhishekapati, Tirunelveli-627 012, India.
${ }^{3}$ Department of Mathematics,Government Arts and Science College,Tittagudi- 606 106, India.

ABSTRACT

Let G be a graph. Let $f: V(G) \rightarrow\{0,1,2, \ldots, k-1\}$ be a function where $k \in \mathbb{N}$ and $k>1$. For each edge $u v$, assign the label $f(u v)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil . f$ is called a k total mean cordial labeling of G if $\left|t_{m f}(i)-t_{m f}(j)\right| \leq 1$, for all $i, j \in\{0,1,2, \ldots, k-1\}$, where $t_{m f}(x)$ denotes the total number of vertices and edges labelled with $x, x \in\{0,1,2, \ldots, k-1\}$. A graph with admit a k total mean cordial labeling is called k-total mean cordial graph. In this paper we investigate the 4 -total mean cordial labeling behaviour of some spider graph.

ARTICLE INFO

Article history:

Received 12, January 2023
Received in revised form 09 March 2023
Accepted 15, May 2023
Available online 01, June 2023

Keyword: tree, spider graph.
AMS subject Classification: 05C78.

1 Introduction

In this paper we consider simple, finite and undirected graphs only. Cordial labeling was introduced by Cahit [1]. The notion of k-total mean cordial labeling has been introduced in [5]. The 4 -total mean cordial labeling behaviour of several graphs like cycle, complete

[^0]graph, star, bistar, comb and crown have been studied in [5, 6, 7, 8, 9, 10, 11, 12, 13]. In this paper we investigate the 4 - total mean cordial labeling of spider graph. Let x be any real number. Then $\lceil x\rceil$ stands for the smallest integer greater than or equal to x. Terms are not defined here follow from Harary[3] and Gallian[2]. .

$2 k$-total mean cordial graph

Definition 1. Let G be a graph. Let $f: V(G) \rightarrow\{0,1,2, \ldots, k-1\}$ be a function where $k \in \mathbb{N}$ and $k>1$. For each edge $u v$, assign the label $f(u v)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil . f$ is called a k-total mean cordial labeling of G if $\left|t_{m f}(i)-t_{m f}(j)\right| \leq 1$, for all $i, j \in$ $\{0,1,2, \ldots, k-1\}$, where $t_{m f}(x)$ denotes the total number of vertices and edges labelled with $x, x \in\{0,1,2, \ldots, k-1\}$. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph.

3 Preliminaries

Definition 2. [3] A connected acyclic graph is called a tree.

Definition 3. [4] A tree is called a spider graph if it has a centre vertex u of degree >1 and all the other vertex is either degree 1 or degree 2 . Thus the spider is an amalgamation of k paths with various lengths. If it has x_{1}^{\prime} of length a_{1}, x_{2}^{\prime} of length $a_{2}, \ldots, x_{m}^{\prime}$ of length a_{m}. then it is denoted by $\operatorname{SP}\left(a_{1}^{x_{1}}, a_{2}^{x_{2}}, \ldots, a_{m}^{x_{m}}\right)$ where $a_{1}<a_{2}<\ldots a_{m}$.

4 MAIN RESULTS

Theorem 4. The spider graph $S P\left(1^{m}, 2^{n}\right)$ is 4-total mean cordial for all values of $m, n \geq$ 1.

Proof. Let $V\left(S P\left(1^{m}, 2^{n}\right)\right)=\left\{u, u_{i}, v_{j}, w_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(S P\left(1^{m}, 2^{n}\right)\right)=$ $\left\{u u_{i}: 1 \leq i \leq m\right\} \cup\left\{u v_{j}, v_{j} w_{j}: 1 \leq j \leq n\right\}$.
Note that $\left|V\left(S P\left(1^{m}, 2^{n}\right)\right)\right|+\left|E\left(S P\left(1^{m}, 2^{n}\right)\right)\right|=2 m+4 n+1$.
Assign the label 2 to the vertex u. Now we assign the label 0 to the n vertices v_{1}, v_{2}, \ldots, v_{n}. Next we assign the label 3 to the n vertices $w_{1}, w_{2}, \ldots, w_{n}$.

Case 1. $m \equiv 0(\bmod 4)$.
Let $m=4 r, r \geq 1$. Assign the label 0 to the $2 r$ vertices $u_{1}, u_{2}, \ldots, u_{2 r}$. Now we assign the label 2 to the r vertices $u_{2 r+1}, u_{2 r+2}, \ldots, u_{3 r}$. Next we assign the label 3 to the r
vertices $u_{3 r+1}, u_{3 r+2}, \ldots, u_{4 r}$.
Case 2. $m \equiv 1(\bmod 4)$.
Let $m=4 r+1, r \geq 0$. Assign the label to the vertices $u_{i}(1 \leq i \leq 4 r)$ as in case 1 . Next we assign the label 0 to the vertex $u_{4 r+1}$.

Case 3. $m \equiv 2(\bmod 4)$.
Let $m=4 r+2, r \geq 0$. Label the vertices $u_{i}(1 \leq i \leq 4 r+1)$ as in Case 2 . Now we assign the labels 3 to the vertex $u_{4 r+2}$.

Case 4. $m \equiv 3(\bmod 4)$.
Let $m=4 r+3, r \geq 0$. As in case 3, we assign the label to the vertices $u_{i}(1 \leq i \leq 4 r+2)$. Finally we assign the label 0 to the vertex $u_{4 r+3}$.

Thus this vertex labeling f is a 4 -total mean cordial labeling follows from the Table 1.

m	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$m=4 r$	$2 r+n$	$2 r+n$	$2 r+n+1$	$2 r+n$
$m=4 r+1$	$2 r+n+1$	$2 r+n+1$	$2 r+n+1$	$2 r+n$
$m=4 r+2$	$2 r+n+1$	$2 r+n+1$	$2 r+n+1$	$2 r+n+2$
$m=4 r+3$	$2 r+n+2$	$2 r+n+2$	$2 r+n+1$	$2 r+n+2$

Table 1:

Theorem 5. The spider graph $S P\left(1^{m}, 3^{n}\right)$ is 4-total mean cordial for all values of $m, n \geq$ 1.

Proof. Let $V\left(S P\left(1^{m}, 3^{n}\right)\right)=\left\{u, u_{i}, x_{j}, y_{j}, z_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(S P\left(1^{m}, 3^{n}\right)\right)=$ $\left\{u u_{i}: 1 \leq i \leq m\right\} \cup\left\{u x_{j}, x_{j} y_{j}, y_{j} z_{j}: 1 \leq j \leq n\right\}$.
Clearly $\left|V\left(S P\left(1^{m}, 3^{n}\right)\right)\right|+\left|E\left(S P\left(1^{m}, 3^{n}\right)\right)\right|=2 m+6 n+1$.
Assign the label 1 to the vertex u.
Case 1. $m \equiv 1(\bmod 2)$.
Let $m=2 t+1, t \geq 0$. Now we assign the label 3 to the $t+1$ vertices $u_{1}, u_{2}, \ldots, u_{t+1}$.
Next we assign the label 0 to the t vertices $u_{t+2}, u_{t+3}, \ldots, u_{2 t+1}$.
Subcase 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \geq 1$. Assign the label 0 to the $2 r$ vertices $x_{1}, x_{2}, \ldots, x_{2 r}$. Now we assign the label 3 to the $2 r$ vertices $x_{2 r+1}, x_{2 r+2}, \ldots, x_{4 r}$. Next we assign the label 0 to the r vertices $y_{1}, y_{2}, \ldots, y_{r}$. We now assign the label 1 to the r vertices $y_{r+1}, y_{r+2}, \ldots, y_{2 r}$. Next we assign the label 2 to the $2 r$ vertices $y_{2 r+1}, y_{2 r+2}, \ldots, y_{4 r}$. Now we assign the label

0 to the r vertices $z_{1}, z_{2}, \ldots, z_{r}$. We now assign the label 1 to the r vertices z_{r+1}, z_{r+2}, $\ldots, z_{2 r}$. Now we assign the label 1 to the r vertices $z_{2 r+1}, z_{2 r+2}, \ldots, z_{3 r}$. Next we assign the label 3 to the r vertices $z_{3 r+1}, z_{3 r+2}, \ldots, z_{4 r}$.

Subcase 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \geq 0$. Assign the label to the vertices $x_{j}, y_{j}, z_{j}(1 \leq j \leq 4 r)$ as in Subcase 1 . Next we assign the labels $0,0,3$ to the vertices $x_{4 r+1}, y_{4 r+1}, z_{4 r+1}$.

Subcase 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \geq 0$. Label the vertices $x_{j}, y_{j}, z_{j}(1 \leq j \leq 4 r+1)$ as in Subcase 2. Now we assign the labels $3,2,0$ to the vertices $x_{4 r+2}, y_{4 r+2}, z_{4 r+2}$.

Subcase 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \geq 0$. As in Subcase 3, we assign the label to the vertices x_{j}, y_{j}, z_{j} $(1 \leq j \leq 4 r+1)$. Finally we assign the labels $0,2,3$ to the vertices $x_{4 r+3}, y_{4 r+3}, z_{4 r+3}$.

Case 2. $m \equiv 0(\bmod 2)$.
Let $m=2 t, t \geq 1$. Assign the label 3 to the t vertices $u_{1}, u_{2}, \ldots, u_{t}$. Now we assign the label 0 to the t vertices $u_{t+1}, u_{t+2}, \ldots, u_{2 t}$.

Subcase 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \geq 1$. Label the vertices as in Subcase 1 of Case 1 .
Subcase 2. $n \equiv 1(\bmod 4)$.
Let $m=4 r+1, r \geq 0$. Assign the label to the vertices $x_{j}, y_{j}, z_{j}(1 \leq j \leq 4 r)$ as in Subcase 1 of Case 2. Now we assign the labels $0,3,0$ to the vertices $x_{4 r+1}, y_{4 r+1}, z_{4 r+1}$.

Subcase 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \geq 0$. Label the vertices $x_{j}, y_{j}, z_{j}(1 \leq j \leq 4 r+1)$ as in Subcase 2 of Case 2. Next we assign the labels $3,2,0$ to the vertices $x_{4 r+2}, y_{4 r+2}, z_{4 r+2}$.

Subcase 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \geq 0$. Now we assign the label to the vertices $x_{j}, y_{j}, z_{j}(1 \leq j \leq 4 r+1)$ as in Subcase 3 of Case 2. Finally we assign the label $0,2,3$ to the vertices $x_{4 r+3}, y_{4 r+3}, z_{4 r+3}$.

Thus this vertex labeling f is a 4 -total mean cordial labeling follows from the Table 2.

Theorem 6. The Spider graph $S P\left(1^{m}, 4^{n}\right)$ is a 4 -total mean cordial for all values of $m, n \geq 1$.

m	n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$m=2 t+1$	$n=4 r$	$t+6 r$	$t+6 r+1$	$t+6 r+1$	$t+6 r+1$
$m=2 t+1$	$n=4 r+1$	$t+6 r+3$	$t+6 r+2$	$t+6 r+2$	$t+6 r+2$
$m=2 t+1$	$n=4 r+2$	$t+6 r+4$	$t+6 r+3$	$t+6 r+4$	$t+6 r+4$
$m=2 t+1$	$n=4 r+3$	$t+6 r+5$	$t+6 r+5$	$t+6 r+5$	$t+6 r+6$
$m=2 t$	$n=4 r$	$t+6 r$	$t+6 r+1$	$t+6 r$	$t+6 r$
$m=2 t$	$n=4 r+1$	$t+6 r+2$	$t+6 r+2$	$t+6 r+2$	$t+6 r+1$
$m=2 t$	$n=4 r+2$	$t+6 r+3$	$t+6 r+3$	$t+6 r+4$	$t+6 r+3$
$m=2 t$	$n=4 r+3$	$t+6 r+4$	$t+6 r+5$	$t+6 r+5$	$t+6 r+5$

Table 2:

Proof. Let $V\left(S P\left(1^{m}, 4^{n}\right)\right)=\left\{u, u_{i}, w_{j}, x_{j}, y_{j}, z_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(S P\left(1^{m}, 4^{n}\right)\right)=$ $\left\{u u_{i}: 1 \leq i \leq m\right\} \cup\left\{u w_{j}, w_{j} x_{j}, x_{j} y_{j}, y_{j} z_{j}: 1 \leq j \leq n\right\}$.
Obviously $\left|V\left(S P\left(1^{m}, 4^{n}\right)\right)\right|+\left|E\left(S P\left(1^{m}, 4^{n}\right)\right)\right|=2 m+8 n+1$.
Assign the label 2 to the vertex u. Now we assign the label 3 to the n vertices w_{1}, w_{2}, \ldots, w_{n}. Next we assign the label 0 to the n vertices $x_{1}, x_{2}, \ldots, x_{n}$. We now assign the label 2 to the n vertices $y_{1}, y_{2}, \ldots, y_{n}$. Next we assign the label 0 to the n vertices $z_{1}, z_{2}, \ldots, z_{n}$.

Case 1. $m \equiv 0(\bmod 4)$.
Let $m=4 r, r \geq 1$. Assign the label 0 to the $2 r$ vertices $u_{1}, u_{2}, \ldots, u_{2 r}$. Next we assign the label 2 to the r vertices $u_{2 r+1}, u_{2 r+2}, \ldots, u_{3 r}$. Now we assign the label 3 to the r vertices $u_{3 r+1}, u_{3 r+2}, \ldots, u_{4 r}$.

Case 2. $m \equiv 1(\bmod 4)$.
Let $m=4 r+1, r \geq 0$. Now we assign the label to the vertices $u_{i}(1 \leq i \leq 4 r)$ as in case 1. Next we assign the label 0 to the vertex $u_{4 r+1}$.

Case 3. $m \equiv 2(\bmod 4)$.
Let $m=4 r+2, r \geq 0$. Label the vertices $u_{i}(1 \leq i \leq 4 r+1)$ as in Case 2. Now we assign the labels 3 to the vertex $u_{4 r+2}$.

Case 4. $m \equiv 3(\bmod 4)$.
Let $m=4 r+3, r \geq 0$. As in case 3, we assign the label to the vertices $u_{i}(1 \leq i \leq 4 r+2)$.
Finally we assign the label 0 to the vertex $u_{4 r+3}$.
Thus this vertex labeling f is a 4 -total mean cordial labeling follows from the Table 3.

Theorem 7. The Spider graph $S P\left(2^{m}, 3^{n}\right)$ is a 4 -total mean cordial for all values of

m	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$m=4 r$	$2 r+2 n$	$2 r+2 n$	$2 r+2 n+1$	$2 r+2 n$
$m=4 r+1$	$2 r+2 n+1$	$2 r+2 n+1$	$2 r+2 n+1$	$2 r+2 n$
$m=4 r+2$	$2 r+2 n+1$	$2 r+2 n+1$	$2 r+2 n+1$	$2 r+2 n+2$
$m=4 r+3$	$2 r+2 n+2$	$2 r+2 n+2$	$2 r+2 n+1$	$2 r+2 n+2$

Table 3:
$m, n \geq 1$.
Proof. Let $V\left(S P\left(2^{m}, 3^{n}\right)\right)=\left\{u, u_{i}, v_{i}, x_{j}, y_{j}, z_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(S P\left(2^{m}, 3^{n}\right)\right)=$ $\left\{u u_{i}, u_{i} v_{i}: 1 \leq i \leq m\right\} \cup\left\{u x_{j}, x_{j} y_{j}, y_{j} z_{j}: 1 \leq j \leq n\right\}$.
Clearly $\left|V\left(S P\left(2^{m}, 3^{n}\right)\right)\right|+\left|E\left(S P\left(2^{m}, 3^{n}\right)\right)\right|=4 m+6 n+1$.
Assign the label 1 to the vertex u. Next we assign the label 0 to the m vertices u_{1}, u_{2}, \ldots, u_{m}. Now we assign the label 3 to the m vertices $v_{1}, v_{2}, \ldots, v_{m}$.

Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \geq 1$. Assign the label 0 to the $2 r$ vertices $x_{1}, x_{2}, \ldots, x_{2 r}$. Now we assign the label 3 to the $2 r$ vertices $x_{2 r+1}, x_{2 r+2}, \ldots, x_{4 r}$. Next we assign the label 0 to the r vertices $y_{1}, y_{2}, \ldots, y_{r}$. We now assign the label 1 to the r vertices $y_{r+1}, y_{r+2}, \ldots, y_{2 r}$. Next we assign the label 2 to the $2 r$ vertices $y_{2 r+1}, y_{2 r+2}, \ldots, y_{4 r}$. Now we assign the label 0 to the r vertices $z_{1}, z_{2}, \ldots, z_{r}$. We now assign the label 1 to the r vertices z_{r+1}, z_{r+2}, $\ldots, z_{2 r}$. Now weassign the label 1 to the r vertices $z_{2 r+1}, z_{2 r+2}, \ldots, z_{3 r}$. Next we assign the label 3 to the r vertices $z_{3 r+1}, z_{3 r+2}, \ldots, z_{4 r}$.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \geq 0$. Assign the label to the vertices $x_{j}, y_{j}, z_{j}(1 \leq j \leq 4 r)$ as in Case 1. Next we assign the labels $3,2,0$ to the vertices $x_{4 r+1}, y_{4 r+1}, z_{4 r+1}$.

Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \geq 0$. Label the vertices $x_{j}, y_{j}, z_{j}(1 \leq j \leq 4 r+1)$ as in Case 2. Now we assign the labels $0,3,0$ to the vertices $x_{4 r+2}, y_{4 r+2}, z_{4 r+2}$.

Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \geq 0$. As in Case 2, we assign the label to the vertices x_{j}, y_{j}, z_{j} $(1 \leq j \leq 4 r+1)$. Finally we assign the labels $0,0,3,3,2,0$ to the vertices $x_{4 r+2}, y_{4 r+2}$, $z_{4 r+2}, x_{4 r+3}, y_{4 r+3}, z_{4 r+3}$.

Thus this vertex labeling f is a 4 -total mean cordial labeling follows from the Table 4.

n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$n=4 r$	$m+6 r$	$m+6 r+1$	$m+6 r$	$m+6 r$
$n=4 r+1$	$m+6 r+1$	$m+6 r+2$	$m+6 r+2$	$m+6 r+2$
$n=4 r+2$	$m+6 r+3$	$m+6 r+3$	$m+6 r+4$	$m+6 r+3$
$n=4 r+3$	$m+6 r+5$	$m+6 r+4$	$m+6 r+5$	$m+6 r+5$

Table 4:

Theorem 8. The Spider graph $S P\left(2^{m}, 4^{n}\right)$ is a 4 -total mean cordial for all values of $m, n \geq 1$.

Proof. Let $V\left(S P\left(2^{m}, 4^{n}\right)\right)=\left\{u, u_{i}, v_{i}, w_{j}, x_{j}, y_{j}, z_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(S P\left(2^{m}, 4^{n}\right)\right)=\left\{u u_{i}, u_{i} v_{i}: 1 \leq i \leq m\right\} \cup\left\{u w_{j}, w_{j} x_{j}, x_{j} y_{j}, y_{j} z_{j}: 1 \leq j \leq n\right\}$. Note that $\left|V\left(S P\left(2^{m}, 4^{n}\right)\right)\right|+\left|E\left(S P\left(2^{m}, 4^{n}\right)\right)\right|=4 m+8 n+1$.

Assign the label 2 to the vertex u. Next we assign the label 0 to the m vertices u_{1}, u_{2}, \ldots, u_{m}. Now we assign the label 3 to the m vertices $v_{1}, v_{2}, \ldots, v_{n}$. We now assign the label 3 to the n vertices $w_{1}, w_{2}, \ldots, w_{n}$. Next $x_{1}, x_{2}, \ldots, x_{n}$. We now assign the label 2 to the n vertices $y_{1}, y_{2}, \ldots, y_{n}$. Finally we assign the label 3 to the n vertices $z_{1}, z_{2}, \ldots, z_{n}$. Obviously $t_{m f}(0)=t_{m f}(1)=t_{m f}(3)=m+2 n ; t_{m f}(3)=m+2 n+1$.

Theorem 9. The Spider graph $S P\left(1^{n}, 2^{n}, 3^{n}\right)$ is 4-total mean cordial for all values of $n \geq 1$.

Proof. Let $V\left(S P\left(1^{n}, 2^{n}, 3^{n}\right)\right)=\left\{u, u_{i}, v_{i}, w_{i}, x_{i}, y_{i}, z_{i}: 1 \leq i \leq n\right\}$ and $E\left(S P\left(1^{n}, 2^{n}, 3^{n}\right)\right)=$ $\left\{u u_{i}, u v_{i}, v_{i} w_{i}, u x_{i}, x_{i} y_{i}, y_{i} z_{i}: 1 \leq i \leq n\right\}$.
Obviously $\left|V\left(S P\left(1^{n}, 2^{n}, 3^{n}\right)\right)\right|+\left|E\left(S P\left(1^{n}, 2^{n}, 3^{n}\right)\right)\right|=12 n+1$.
Assign the label 1 to the vertex u. We now assign the label 0 to the n vertices u_{1}, u_{2}, \ldots, u_{n}. Now we assign the label 0 to the n vertices $v_{1}, v_{2}, \ldots, v_{n}$. Next we assign the label 3 to the n vertices $w_{1}, w_{2}, \ldots, w_{n}$. Now we assign the label 0 to the n vertices x_{1}, x_{2}, \ldots, x_{n}. We now assign the label 3 to the n vertices $y_{1}, y_{2}, \ldots, y_{n}$. Finally we assign the label 2 to the n vertices $z_{1}, z_{2}, \ldots, z_{n}$.
Clearly $t_{m f}(0)=t_{m f}(2)=t_{m f}(3)=3 n ; t_{m f}(1)=3 n+1$.

Theorem 10. The Spider graph $S P\left(1^{n}, 2^{n}, 3^{n}, 4^{n}\right)$ is 4 -total mean cordial for all values of $n \geq 1$.

Proof. Let $V\left(S P\left(1^{n}, 2^{n}, 3^{n}, 4^{n}\right)\right)=\left\{u, u_{i}, v_{i}, w_{i}, x_{i}, y_{i}, z_{i}, p_{i}, q_{i}, r_{i}, s_{i}: 1 \leq i \leq n\right\}$ and $E\left(S P\left(1^{n}, 2^{n}, 3^{n}, 4_{n}\right)\right)=\left\{u u_{i}, u v_{i}, v_{i} w_{i}, u x_{i}, x_{i} y_{i}, y_{i} z_{i}, u p_{i}, p_{i} q_{i}, q_{i} r_{i}, r_{i} s_{i}: 1 \leq i \leq n\right\}$. Obviously $\left|V\left(S P\left(1^{n}, 2^{n}, 3^{n}, 4^{n}\right)\right)\right|+\left|E\left(S P\left(1^{n}, 2^{n}, 3^{n}, 4^{n}\right)\right)\right|=20 n+1$.

Assign the label 1 to the vertex u. We now assign the label 0 to the $4 n$ vertices u_{1}, u_{2}, $\ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, \ldots, w_{n}, p_{1}, p_{2}, \ldots, p_{n}$. Next we assign the label 1 to the n vertices $x_{1}, x_{2}, \ldots, x_{n}$. Now we assign the label 2 to the $2 n$ vertices $y_{1}, y_{2}, \ldots, y_{n}, z_{1}, z_{2}$, \ldots, z_{n}. Finally we assign the label 3 to the $3 n$ vertices $q_{1}, q_{2}, \ldots, q_{n}, r_{1}, r_{2}, \ldots, r_{n}, s_{1}, s_{2}$, \ldots, s_{n}.
Clearly $t_{m f}(0)=t_{m f}(2)=t_{m f}(3)=5 n ; t_{m f}(1)=5 n+1$.

References

[1] Cahit.I., Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars combin., 23 (1987) 201-207.
[2] Gallian.J.A., A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2016) \#Ds6.
[3] Harary, Graph theory, Addision wesley, New Delhi (1969).
[4] Ponraj.R., Gayathri.A., Somasundaram.S., Pair difference cordiality of some special graphs, J.Appl. and Pure Math. Vol 3 (2021), No.5-6, pp 263-274.
[5] Ponraj.R., Subbulakshmi.S., Somasundaram.S., k-total mean cordial graphs, J.Math.Comput.Sci. 10(2020), No.5, 1697-1711.
[6] Ponraj.R., Subbulakshmi.S., Somasundaram.S., 4-total mean cordial graphs derived from paths, J.Appl and Pure Math. Vol 2(2020), 319-329.
[7] Ponraj.R., Subbulakshmi.S., Somasundaram.S., 4-total mean cordial labeling in subdivision graphs, Journal of Algorithms and Computation 52(2020), 1-11.
[8] Ponraj.R., Subbulakshmi.S., Somasundaram.S., Some 4-total mean cordial graphs derived from wheel, J. Math. Comput. Sci. 11(2021), 467-476.
[9] Ponraj.R., Subbulakshmi.S., Somasundaram.S., 4-total mean cordial graphs with star and bistar, Turkish Journal of Computer and Mathematics Education. 12(2021), 951956.
[10] Ponraj.R., Subbulakshmi.S., Somasundaram.S., On 4-total mean cordial graphs, J. Appl. Math and Informatics, Vol 39(2021), 497-506.
[11] Ponraj.R, Subbulakshmi.S., Somasundaram.S., 4-total mean cordial labeling of special graphs, Journal of Algorithms and Computation, 53(2021), 13-22.
[12] Ponraj.R., Subbulakshmi.S., Somasundaram.S., 4-total mean cordial labeling of union of some graphs with the complete bipartite graph $K_{2, n}$, Journal of Algorithms and Computation, 54(2022), 35-46.
[13] Ponraj.R, Subbulakshmi.S., Somasundaram.S., 4-total mean cordial labeling of some graphs derived from H-graph and star, International J. Math.Combin, Vol 3(2022), 99-106.

[^0]: *Corresponding author: R. Ponraj. Email: ponrajmaths@gmail.com
 ${ }^{\dagger}$ Ssubbulakshmis@gmail.com
 \ddagger sivamaths1975@gmail.com

