
Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

A new meta-heuristic algorithm of giant trevally for
solving engineering problems

Marjan Aliyari ∗1

1Department of Mathematics of Ayatollah Borujerdi University, Borujerd, Iran

ABSTRACT ARTICLE INFO

As science and technology is progressing in engineering
problems are also getting much more complex. So, solv-
ing these problems is of pivotal concern. Besides, the
optimal solution among the solutions is of great value.
Among them, innovative algorithms inspired by artificial
intelligence or the hunting behavior of animals in nature
have a special place. In this article, a new algorithm
named Giant Trevally Optimizer (GTO) is presented,
by simulating the hunting strategy of this type of fish, a
novel algorithm with the same title is introduced, which
has been examined, and subjected to various tests and
criteria. In the performance studies of the GTO algo-
rithm with several efficient meta-heuristic algorithms to
find the global optimal solution, fifteen criterion func-
tions having various features along with two hard prob-
lems in engineering design were used. The performance
of the GTO algorithm has been better than other algo-
rithms.
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1 Introduction

With the progress of science and technology, not only solving applied science and engi-
neering problems has become more complicated, but also finding optimal solutions has
become one of the serious problems of these problems. Meanwhile, classical optimization
methods based on mathematics do not have the limitations of today’s problems. One of
the most significant features and challenges of these problems is that the solution space is
discrete or unknown, in which case mathematical optimization methods cannot be used
for solving them. In recent years, the use of meta-heuristic algorithms to solve practical
problems has been proposed and welcomed. These algorithms give acceptable answers
according to the conditions of each problem, But concerning that these algorithms are
sensitive to parameters setting ways applied by users, there is no guarantee for finding
globally optimal solutions. Because of their random nature there is no guarantee of find-
ing globally optimal solutions. This is even though that classical optimization methods
based on mathematics do not respond to the difficult and complex conditions of today’s
problems, including the limitations of these methods. Now the question is which one of
these algorithms is superior to the other? Is there any meta-heuristic algorithm that is
superior to the other? The case of the NFL[15] is an answer to such questions. No Free
Lunch Theorem, often abbreviated NFL or NFLT, is a theoretical finding that shows all
optimization algorithms perform equally well when their performances are considered over
all possible objective functions. The name refers to the saying ”There is no such thing as
a free lunch”, meaning there are no easy shortcuts to success.
We know that one of the important concerns in the optimization process is the possibility
of randomness of the search space, which may not always produce a sufficiently optimal
solution. As a result, many MAs have been developed by researchers to provide acceptable
optimal solutions or at least as optimal as possible. The author of this study were inspired
to propose a new optimization method that can provide satisfactory results for a wide
range of optimization tasks. The novelty and contribution of this research is in the design
of a new MA called Giant Trevally Optimizer (GTO), which is based on the behavior
and strategies of giant trevally when hunting seabirds. These novel hunting strategies of
foraging moving patterns, choosing the appropriate area in terms of quantity of food, and
jumping out of water to attack and catch the prey were the main inspiration in the design
of the GTO[10].
In this direction, the GTO algorithm is presented and simulated, and then it is tested
to ensure its effectiveness in solving optimization problems in various criteria functions,
including unimodal and multimodal with different characteristics. In the following, we use
this algorithm to solve several difficult and complex real engineering optimization prob-
lems and compare the obtained answers with several strong and efficient meta-heuristic
algorithms. This manuscript is organized as follows: Section 2 introduces and briefly
describes important types of meta-heuristic algorithms. Section 3 analyzes the behav-
ior of giant trevally and mathematically simulate it. In this section, we also present the
flowchart of this algorithm. In section 4, we use benchmark functions and other validation
methods for this algorithm, solve several real problems, and compare the performance of
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this algorithm with several others algorithms, and finally, in section 5, provides some
concluding remarks.

2 Metaheuristics Algorithms

Meta-heuristic algorithms (MA) can be categorized as follows:

2.1 EVOLUTIONARY ALGORITHMS (EA)

This type of algorithm is based on the theory of the evolution of different animal species.
The most important category of this group is Genetic Algorithm (GA)[6] and Differential
Evolution Algorithm (DE)[12], which mainly differ in the process of selecting the next
generation.

2.2 SWARM INTELLIGENCE ALGORITHMS (SIA)

This group of algorithms is based on the collective behavior of different animal species.
The most significant category of this group is the Particle Swarm Optimization Algorithm
(PSO)[5] and the new and useful algorithm called the Reptile Search Algorithm (RSA)[4].
In this group of algorithms, the hunting behavior (prey search) of group animals in nature
is simulated. In the other words, finding the prey is the same random solution and the
prey itself is the exploitation phase.

2.3 HUMAN-BASED-ALGORITHMS (HA)

Evolutionary computing, Human Based Genetic Algorithm (HBGA) is the same as Ge-
netic Algorithm except that it allows humans to make suggestions to help the evolutionary
process. Therefore, an HBGA has human relations for initial values, mutation, and re-
combination crossover. On the other hand, it can use interfaces to evaluate its price
selection. In fact acctually, an HBGA out sources a conventional genetic algorithm to hu-
mans. An example of this class of algorithms is the algorithm based on knowledge-sharing
acquisition (GSK) [9].

2.4 SCIENCE-BASED-ALGORITHMS (SCA)

Another new category of meta-heuristic algorithms, which has recently been proposed
and investigated, is the modeling of physical phenomena or chemical laws, the focus of
science-based algorithms (for example, gravity, ion motion, etc.). Gas Brownian Motion
Optimization (GBMO) [2], and Charge System Search (CSS) [7] are considered the most
significant SCAs.
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3 GIANT TREVALLY OPTIMIZATION (GTO)

This section describes a proposed MA inspired by nature and is called Giant Trevally
Optimizer (GTO) in its roaming range [8]. The giant trevally was first described by
Swedish naturalist Peter Forskell in 1775 based on specimens taken from the Red Sea
near Yemen and Saudi Arabia, one of which was designated as the holotype[13]. This
giant grows in the warmer months and its peaks vary by region. This fish grows relatively
fast and reaches sexual maturity at the age of three years and a length of about 60 cm.
The giant trevally is an apex predator in most of its habitats and, it uses intelligent
hunting methods, known for hunting individually and in schools (groups).
Literature investigated the movement of giant trevallies within their ecosystems and be-
tween habitats as the search space expands. Some data suggests that adult giant trevallies
make daily and seasonal movements of up to 9 kilometers within their roaming range. Ju-
veniles can migrate up to 70 kilometers from their home atolls and reefs [3].
It is known that the most major member in the movement of a group is the leader. The
strategy of the giant trevally in its hunting is that it first looks for the prey (food) and
after choosing it, jumps out of the water and hits the prey (seabirds) with a long jump.
Hunting process can be divided into four general parts as follows. Searching for prey,
which is mainly seabirds, choosing the correct area for hunting, chasing the prey and,
finally attacking the prey. The GTO algorithm is derived from these movements and
simulation steps.

3.1 Simulation

Similar to all population-based algorithms, in this algorithm, the optimization process
starts with the creation of random initial solutions. At this stage, each giant trevally is a
candidate for solving the optimization problem. every member of this community forms
a d-dimensional vector, and finally, the entire members form a matrix. Population of this
algorithm can be described as a matrix (3.1).

X =


X1
...
Xi
...

XN

 =


x1,1 · · · x1,j · · ·x1,d
...

...
...

xi,1 · · · xi,j · · · xi,d
...

...
...

xN,1 · · · xN,j · · ·xN,d

 (3.1)

Here X is a solution for GTO, d is the number of decision variables and N is the number of
GTO members, xi,j is the value of the j

th variable specified by the ith candidate solution.
At first, it is necessary to randomly assign positions in the solution spaces to each trevally,
we obtain these positions using (3.2) as follows:

X(i,j) = Lj + (Uj − Lj)×R (3.2)
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Where j = 1, . . . , d, and i = 1, . . . , N , R is a random number in the interval [0, 1]. Uj, Lj

represents restriction the highest and the lowest value that a population member can
have. According to (3.2), a set of these values is stored in the F vector as follows:

F =


F1
...
Fi
...

FN

 =


f(X1)

...
f(Xi)

...
f(XN)

 (3.3)

Fi = f(Xi) is the value of the ith member in the objective function and F as the set
of these values is called the vector of the objective function. As previously stated, the
GTO algorithm can be divided into four general parts. In the first stage of prey search
(predation) using Levy flights, which are a special class of generalized random walks in
which the length of the steps during the walk is described by a ”heavy-tailed” probability
distribution, then selection of the hunting area, Chasing and jumping out of the water to
catch prey. Fig 1 shows trevally jumping out of the water and catching prey.

Figure 1: Giant trevally fish hunting

Considering that giant trevally can travel long distances to find food, their movement can
be simulated using the following:

X(t+ 1) = BestP ×R + [(U − L)×R + L]× Levy(d) (3.4)



42 M. Aliyari. / JAC 55 issue 1, June 2023, PP. 37 - 51

Where X(t+1) is the next iteration giant trevally position vector, BestP It shows the best
position determined in the during their last search, and R is a random number in[0, 1].
Levy(d) is a Levy fight, a particular class of non-Gaussian random process whose step
size is determined by a Levy distribution [16]. It is important to note that Levy’s flight
behavior has been shown by various animals as birds and marine wild animals [17], [11]
and is calculated by (3.5):

Levy(d) = 0.01× u× σ
β
√
| v |

(3.5)

Where, β ∈ (0, 2) is the index of the Levy flight distribution function, which is assigned
a value of 1.5 in this study, u, v ∈ (0, 1) are random numbers. σ is calculated using the
following:

σ = (
Γ(1 + β)× sin(βπ

2
)

Γ(1+β
2
)× β × 2(

β−1
2

)
) (3.6)

Now in the stage of choosing the right area for hunting, the giant troll must determine
the best area for its prey and food. This behavior is simulated as follows:

X(t+ 1) = BestP ×R× A+MeanInfo −Xi(t)×R (3.7)

Where X(t + 1) is the position vector of giant trevallies in the next iteration t and
A ∈ [0.3, 0.4] is a position change controlling parameter. Xi(t) is the location of the giant
trevally i, at time t. Also, MeanInfo is the average of the previous information, which
indicates that the giant trevally has kept all the information from the previous stages,
and of course, it can be calculated as follows [10]:

MeanInfo =
1

N

N∑
i=1

Xi(t) (3.8)

After the trevally is in the correct position for hunting, now it is time for it to come out of
the water in this position and attack the bird (prey) with a jump. This is the exploitation
(intensification)phose. But the remarkable and significant point is that to simulate this
movement in mathematical, we must understand that the trevally in the water is affected
by visual waves, which is also due to the refraction of light. It is necessary to remember
that when light waves enter the sea from the air, refraction of light occurs. Conforming
to Snell’s law [1], both the incident ray and the refracted ray form an angle with the
ordinary surface at the point of refraction. According to this law, by using refraction
coefficients, which are constant values, if we know the radiation angle, we can predict
what the refraction angle will be and vice versa. More details can be seen in [10]. The
end of this section, the GTO flowchart is shown in Fig2:

4 Algorithm performance in various criteria

In checking the validity of the GTO algorithm performance, two test samples are per-
formed, and the results obtained by GTO are evaluated, and compared with the results
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Figure 2: The flowchart of the GTO algorithm.
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of other algorithms. Firstly case: The first group test is based on the performance of
algorithms based on fifteen benchmark test functions with a variety of features. Secondly
case: The GTO algorithm performance is evaluated by using two complicated engineering
problems that are important, and widely used. Case 1: Testing Benchmark Functions.
Recently several classes of benchmark functions with different characteristics are used.
for checking to the performance of algorithms in practice, instead of using them in in-
dividual problems. In examining this type of criterion functions, if the performance of
the algorithm is acceptable, one can be optimistic about its results in solving real prob-
lems. At this stage, to check and compare the GTO algorithm with other algorithms,
we use unimodal and multimodal functions, each of which has different characteristics,
such as separable and inseparable, and can test the algorithm in different dimensions. In
this study, the performance of GTO is compared with seven different meta-heuristic algo-
rithms DE, GSA, WCA(Water Cycle Algorithm), MFO, PSO, and RSA. The calculations
of this work have been done in MATLAB 2020 software, and each algorithm is executed
50 times for each function, and the population size, and the number of repetitions are set
to 50 and 1000, respectively.
In this test, we compare all the investigated algorithms based on two criteria, the mean
”Mean” and the standard deviation ”Std” of the best solution:

Mean =
1

Run

R∑
i=1

BestG (4.1)

Std =

√
1

Run
(BestG −Mean)2 (4.2)

Where BestG is the global solution, Mean is the average solution obtained in the ith , and
Run is the number of independent runs. The results obtained from these two criteria for
fifteen different benchmark functions in features can be seen in Table 1:
As you can see in Table 1, the GTO algorithm is the most efficient optimization algorithm
compared to other competitors and produces good results in terms of average objective
functions and standard deviation compared to others. From a statistical point of view,
GTO was the most effective for nine functions out of fifteen benchmark functions (1,3, 4, 6,
7, 9, 10, 13, and 14), and in three functions (2, 8, and 12) it was the best result but shared
with at least one. For the three remaining benchmark functions, GTO ranked second
with the least difference from the best-competing algorithms. Note that, the benchmark
functions used are listed in Table 2 of Appendix 1 at the end of this manuscript.
When evaluating the exploration capability of an optimization algorithm, multimodal
functions prove to be extremely helpful. Optimization of these types of functions (i.e.,
separable and non-separable multimodal functions) is extremely difficult because local
optima can only be avoided through an adequate balance between diversification and
intensification.
GTO has a very good exploration capability, according to the results functions reported
in Table 1. The proposed algorithm consistently ranks first or second in the vast majority
of test problems. This is a result of integrated exploration mechanisms in the proposed
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N In GTO DE GSA WCA MFO PSO RSA
1 M. 0 8.25E-10 1.11E-16 1.57E-5 133.25 1.11E-17 1.10E-16

Std. 0 1.51e-10 2.03e-17 2.94e-60 235.25 2.05e-18 1.96e-17
2 M. 0 0 0.1742 0 3352.2310 158.2356 0

Std. 0 0 0.312 0 615.23601 28.2312 0
3 M. 4.27E-06 8.26E-02 0.06521 4.36E-04 1.9001 1.62E-01 3.24E-05

Std. 9.2134e-07 0.01624 0.0101 7.8521e-05 0.3562 0.02541 7.38e-06
4 M. 9.95E-10 1.1521E+00 1.52325 1.752E+00 1.6525E+00 9.36E-05 2.69E-02

Std. 1.8625e-10 0.3252 0.28654 0.32536 0.37562 1.5932e-05 6.05e-02
5 M. -209.952 -202.965 -209.968 -209.895 -17.021 -209.999 -208.625

Std. 0.0086 1.3625 0.0045 7.2531e-04 6.8536 1.8259e-04 1.364e-03
6 M. 2.9652E-08 27.7021 32.7652 2.72E+01 265833 21.5398 6.025E-01

Std. 5.6521e-09 5.652 5.8625 4.6589 4.3265e+05 3.8958 2.169e-02
7 M. 0.21754 1.1251 0.6853 0.6667 51712.21 0.06667 0.6665

Std. 0.3981 0.2054 0.1303 0.1216 9.4526e+03 0.1217 0.1216
8 M. 0.9979 0.9979 3.9374 2.9521 2.4525 1.6562 1.0231

Std. 0 0 0.5395 0.3721 0.2593 0.1203 0.0521
9 M. -1114.81 -11121.6 -2608.56 -6289.32 -8686.21 -3589.23 -1120.31

Std. 260.9856 264.3256 1.8564e+03 1.8186e+03 709.1532 1.6582e+03 262.6321
10 M. -10.1526 -10.1495 -6.5821 -9.3201 -6.04562 -5.3077 -10.1596

Std. 5.4852e-05 6.3501e-04 0.6525 0.1523 0.7496 0.8850 7.226e-05
11 M. -10.5362 -10.5361 -10.5364 -10.2653 -7.9425 -3.7521 -9.8952

Std. 3.6525e-05 5.4725e-05 0 0.0495 0.4725 1.2352 0.0158
12 M. -3.8628 -3.8628 -3.8628 -3.8616 -3.8628 -3.8628 -3.8628

Std. 0 0 0 2.2274e-04 0 0 0
13 M. -3.32189 -3.322 -3.3219 -3.2739 -3.2333 -3.2903 -3.2832

Std. 3.5785e-04 3.6524e-04 3.5602e-04 0.0085 0.0158 0.0054 0.0075
14 M. 0 0.0002 7.7782 0.0372 9.03195 0.0067 0.0002

Std. 0 3.1038e-05 1.4205 6.7821e-04 1.6490 0.0012 2.014e-05
15 M. -1.08093 -1.08094 -1.05262 -1.08094 -1.08094 -1.08094 -1.0790

Std. 0 0 0.0050 0 0 0.0848 0

Table 1: The results obtained from seven efficient meta-heuristic algorithms compared to
GTO algorithm for different criteria functions.(In. Indicator, M. Mean, Std. Standard
deviation)

GTO that guide this algorithm in the direction of the optimum global. Fig3 displays the
comparison of convergence rate changes on several benchmark functions, which demon-
strates that GTO was able to find the optimal solution faster than the other algorithms
in the early stages of the course of iteration.
We know that the results of the optimization of the objective functions based on the av-
erage and standard deviation indicators provide the possibility of meaningful comparison
and evaluation of the optimization algorithms. But, even after several separate runs, it is
possible that one algorithm randomly outperforms several algorithms. Hence, a Wilcoxon
rank sum test [14] is presented in this section to statistically demonstrate the superiority
of GTO over seven competing algorithms. In this test, it is possible to compare two sam-
ples in terms of similarity using the Wilcoxon rank sum test, which is a non-parametric
statistical test. It can also be determined whether the difference between the two sam-
ples is statistically significant or not. In this analysis, a measure called p-value is used
to determine whether the corresponding algorithm is significantly better than another
algorithm. As you can see in Table 2, when comparing the GTO with other algorithms,
the p-value obtained with different dimensional scales shows the superiority of the GTO
algorithm over other important and efficient algorithms.

CASE 2: Optimization of engineering design
1. Cantilever beam
One of the important and practical problems in the field of mechanical engineering is the
problem of cantilever beams (Fig 4). The goal of solving this problem is to minimize the
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Figure 3: Convergence curve change rate of GTO with other algorithms in a number of
benchmark test functions.
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GTO Dimension
vs to 150 700 1200
DE 4.3778E-04 4.3811E-04 4.3878E-04
GSA 6.4304E-04 6.4441E-04 6.4304E-04
WCA 8.5450E-04 1.7090E-03 6.1036E-05
MFO 6.1036E-04 6.1138E-03 6.1045E-04
PSO 9.7255E-03 3.2045E-03 8.3607E-03
RSA 5.0144E-04 5.1102E-04 3.5231E-03

Table 2: p-values obtained from Wilcoxon sum rank test on Table 1 benchmark functions.

weight of the beam as much as possible. The dummy values in this problem are the length
of the five bearings seen in Fig 4 [17]. Table 3 shows the average of the best solutions
obtained from these seven meta-heuristic algorithms, although the difference between the
unknown parameters and the optimal value of the objective function is not large, still the
solutions obtained from GTO are better compared to the others.
In addition, Table 4 compares the statistical results of the GTO algorithm with those of
other methods, demonstrating that the GTO yields a more precise result based on the
best, mean, and the standard deviation indicators.

Mimimize: f(X) = 0.0624(x1 + x2 + x3 + x4 + x5),
Subject to: g(X) = 61

x3
1
+ 27

x3
2
+ 19

x3
3
+ 7

x3
4
+ 1

x3
5)
− 10

0.01 ≤ (x1, x2, x3, x4, x5) ≤ 100

Figure 4: Cantilever beam design problem.
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GTO DE GSA WCA MFO PSO RSA
fx 1.3369 1.3613 1.3399 1.3401 1.3401 1.3400 1.3400
x1 5.9667 5.9961 5.9716 6.0154 6.0460 6.0164 6.011
x2 5.3056 5.3608 5.3747 5.3140 5.2960 5.3097 5.349
x3 4.5020 4.6720 4.4830 4.4910 4.4591 4.4946 4.476
x4 3.5019 3.5357 3.5030 3.5089 3.5182 3.5005 3.491
x5 2.1491 2.2513 2.1439 2.1472 2.1559 2.1534 2.145

Table 3: The results of solving the cantilever beam problem.
GTO DE GSA WCA MFO PSO RSA

Best 1.3369 1.3613 1.3399 1.3401 1.3401 1.3400 1.3400
Mean 1.3367 1.3595 5.9716 6.0154 6.0460 6.0164 6.011
Worst 1.3368 1.3378 5.3747 5.3140 5.2960 5.3097 5.349
Std. 2.457e-05 0.0042 4.6.33e-04 6.2880e-04 7.317e-04 6.239e-04 0.0095

Table 4: Comparison of statistical results of the cantilever beam design.

2. Design of pressure vessels
Another problem in the field of mechanical engineering is related to a cylindrical pressure
tank (Figure 5) whose two ends are spherical (such as tanks for transporting fuel and gas
concentrates). The purpose of this problem is to minimize the weight of the tank. The
variables of this problem are the thickness of the tank, the thickness of the spherical head,
the inner radius of the tank, and the length of the cylindrical area, which we represent by
x1, x2, x3, and x4. This problem is simulated as follows in the majority of optimization
problems:

Minimize f(X) = 0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

Subject to: g1(X) = −x1 + 0.0193x3 ≤ 0
g2(X) = −x2 + 0.00954x3 ≤ 0

g3(X) = −πx2
3x4 − 4

3
πx3

3 + 1296000 ≤ 0
g4(X) = x4 − 240 ≤ 0

0.356 ≤ x1, x2 ≤ 99 , 10 ≤ x3, x4 ≤ 200

.

Figure 5: Pressure vessel design problem.

The results obtained from Table 5 show that although the answers obtained from the GTO
algorithm are different from other competitors, they are still the best answer compared to
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them. This different but optimal performance of the GTO will be another confirmation
of the superiority of this algorithm over other existing algorithms in this problem. Table
6 verifies the robustness of the proposed algorithm, showing that the best statistical
indicators are provided by the GTO.

GTO DE GSA WCA MFO PSO RSA
fx 5887.45 5932.44 6494.91 6159.77 6370.50 5956.125 5966.76
x1 0.7787 0.8061 1.0451 1.0451 0.7601 0.85265 0.798
x2 0.3854 0.3993 0.5221 0.7401 7.2052 0.41153 0.393
x3 40.3429 41.8136 54.7302 41.035 41.018 42.1382 41.255
x4 199.64 180.2421 64.7273 176.6336 176.36 164.164 189.11

Table 5: The results obtained from efficient meta-heuristic algorithms compared to GTO
algorithm for pressure tank design.

GTO DE GSA WCA MFO PSO RSA
Best 5887.45 5932.44 6494.91 6159.77 6370.50 5956.125 5966.76
Mean 5967.51 6196.56 6502.62 6343.26 6601.23 6316.04 6101.26
Worst 6173.25 69.80.69 7432.01 7563.90 7413.01 6953.83 6493.69
Std. 14.25 56.06 112.01 83.02 121.05 77.64 47.08

Table 6: Comparison of statistical results of the pressure vessel design.

5 CONCLUSION

In the present, we used a new meta-heuristic algorithm of the swarm type, inspired by the
hunting behavior of the giant trevally, while, they have been to optimize several major
problems in engineering sciences. This algorithm has been generally divided into four
main parts: general search, selection of the hunting area, chasing the prey, and attacking
the prey. To check the capabilities of this algorithm in practice (exploration and exploita-
tion), two important test categories have been used. The first test was related to fifteen
criterion functions in different spectras (unimodal and multimodal, separable and insepa-
rable). The results obtained from these functions have been compared with several other
effective and valid meta-heuristic algorithms. Fortunately, the proposed algorithm has
better results according to the mean values, standard deviation values, and the Wilcoxon
collective rank test (which is made to ensure uncertainty). The second group of tests
was related to hard problems in engineering design optimization, which was, of course,
to check the performance of the algorithm for real problems. Two issues were related to
the design of the console beams and that of the pressure tank. In these problems, the
algorithm provided better answers than other MAs.
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