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1 Introduction

Graph theory is an important branch of mathematics that is also used in probability and
stochastic processes. In a graph we start moving from a point and select a neighbor from
that point at random and go to that neighborhood from that point and then randomly
select a neighbor from that point.
One of the most popular stochastic process is random walk. A graph in this context
is made up of vertices which are connected by edges. A random sequence of selected
points is a random walk on a graph. If the edges are weighted, all Markov chains can be
shown as a random walk on the directed graph. Similarly, reversible Markov chains can
be represented as a random walk on a undirected graph and symmetric Markov chains
can be represented as a random walk on a regular symmetric graph. Random walk is
included in many mathematical and physics models. Brownian motion of dust in a room
is also a random walk. In some cases, statistical mechanics models also involve random
walk.
Polya [12] proves that in a random walk on d-dimensional grid, if d = 2, it returns to
its starting point for infinity, and for a finite number of motions. See [5, 15] for more
results on random walk on an infinite graph. Recently, random walk has become more
common, but finite graphs have received more attention and their qualitative aspects
have been further studied. For example, how long should we walk before returning to the
starting point? Before we see a given node? Before we see all nodes? How fast does the
random walk distribution tend to its final distribution? Here are some general references
to random walk and finite Markov chains: [1, 4, 5].
Some stochastic processes can be represented as a random walk on a graph. In this paper,
the main parameters for a random walk on graph are examined.

2 Basic notions

A graph is a set of objects called vertices (denoted V and also called nodes) along with a
set of unordered pairs of vertices called edges (denoted E and also called links or lines).
Let G = (V,E) be a connected graph with |V | = n nodes and |E| = m edges. A graph is
said to be connected, if for any two points i, j ∈ V there is always a path joining them.
A directed graph (oriented graph or digraph) is a graph in which edges have orientations
[10]. In the following we will consider only directed graphs. The degree of a vertex i in a
graph is the number d(i) of edges [1].
On an graph G = (V,E) a graph automorphism is a one-to-one (injective) map f : V → V
s.t.

(i, j) ∈ E ⇐⇒ (f(i), f((j)) ∈ E.

The graph G is vertex-transitive if its group of automorphisms i.e. Aut(G) (or equivalently
the graph automorphism) acts transitively on its vertex set V . In other words, given any
vertices i, j ∈ V , there is an f ∈ Aut(G) s.t.
f(i) = j. This simply means that all vertices look the same locally, i.e. we cannot
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uniquely identify any vertex based on the edges and vertices around it. Clearly, random
walk on a (unweighted) graph is a symmetric reversible chain iff the graph is vertex-
transitive[1]. For example a Cayley graph is vertex-transitive [11]. The distance d(i, j)
between any two vertices i, j of G is the length of a shortest path between i and j in
G. A distance-transitive graph is a graph for which if we are given two pairs of vertices
i1, j1, i2, j2 with d(i1, j1) = d(i2, j2), then we can always find an automorphism f of the
graph s.t. f(i1) = i2 and f(j1) = j2. Distance-regular graphs are natural combinatorial
generalizations of distance-transitive graphs [13].
An graph G is bipartite if we can divide V into two disjoint sets U and W s.t. no edge in
E connects two vertices from U or two vertices from W . Equivalently, all edges connect
a vertex in U to a vertex in W [10].
A random walk, in probability theory, is the stochastic process by which randomly-moving
objects wander away from where they started. Random walks are an example of Markov
processes, in which future behaviour is independent of past history. Stock market fluctu-
ations, at least over the short run, are random walks [2].
Consider a random walk on G: we start at a node v0 if at the t

th step we are at a node vt,
we move neighbor of vt with probability 1/d(vt). Clearly, the sequence of random nodes
{vt}t∈N∪{0} or equivalently the random sequence {Xt}t∈N∪{0} is a discrete-time stochastic
process defined on the state space V where Xt denote the location of the random walk at
time t.
The node v0 may be fixed, but may itself be drawn from some initial distribution π0. We
denote by πt the distribution of vt s.t. πt(i) = P(Xt = i). We denote by P = (pij)i,j∈V
the matrix of transition probabilities of this Markov chain, so

pij = P (Xk+1 = j|Xk = i) =

{ 1
d(i)

i, j ∈ V

0 o.w.

These transition probabilities do not depend on “time” k.
The Markov property holds: conditional on the present, the future is independent of the
past:

P (Xk+1 = j|Xk = i,Xk−1 = ik−1, ...X0 = i0) = P (Xk+1 = j|Xk = i) = pij.

Therefore the random sequence of vertices visited by the walk, {Xt}t∈N∪{0} is a Markov
chain with state space V and matrix of transition probabilities P = (pij)i,j∈V . Note that
P is a stochastic matrix, i.e.

∑
j∈V pij = 1 [2].

Similarly for lazy random walk, transition probabilities are as follows:

pij = P (Xk+1 = j|Xk = i) =

{ 1
2d(i)

(i, j) ∈ E
1
2

i = j

(At each step, the lazy random walk will do the following: with probability 1
2
stay at the

current vertex and with probability 1
2
take a usual random step). The graph topology can

be algebraically represented introducing its adjacency matrix AG = (Aij) given by:

Aij =

{
1 (i, j) ∈ E
0 o.w.
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When an undirected edge connects i and j, we say that i and j are adjacent, or that i and
j are neighbors. We denote adjacency as i ∼ j. In directed graph, an edge connecting
nodes i ∈ V and j ∈ V will be denoted as (i, j).
Assuming the time (t) to be discrete, we define at each time step t the jumping probability
pij between nearest neighbour sites i and j:

pij =
Aij∑
j Aij

=


1∑
j Aij

=
1

d(i)
(i, j) ∈ E

0 o.w.

This is the simplest case we can consider: the jumping probabilities are isotropic at each
point and they do not depend on time; in addition the walker is forced to jump at every
time step.
Let D = (Dij) denote the diagonal matrix with Dii = 1/d(i) and Dij = 0, for all i ̸= j,
then P = DAG. If G is d-regular, then P = 1

d
AG [9]. Also we have πt+1 = πtP and

thus πt = π0P
t. It follows that the probability ptij that, starting at i, we reach j in t

steps is given by the ij-entry of the matrix P t. If G is regular, then this Markov chain is
symmetric, the probability of moving to i given that we are at node j is the same as the
probability of moving to node j given that we are at node i. For a non-regular graph G,
this property is replaced by time-reversibility (see relation (1)).
The probability distributions π0, π1, ... are of course different in general. We say that the
distribution π0 is stationary (steady-state or invariant) for the graph G, if π1 = π0. In
this case, πt = π0 for all t ≥ 0. We call this random walk the stationary random walk [2].

It is easy to show that for every graph G, the distribution π(i) = d(i)
2m

is stationary. Hence
a connected non-bipartite undirected graph has a stationary distribution proportional to
the degree distribution. In particular, the uniform distribution on V is stationary if the
graph is regular (see (2)). It is not difficult to show that the stationary distribution on
connected graph is unique. In terms of the stationary distribution, it is easy to formulate
the property of time-reversibility, it is equivalent to saying that for every pair i, j ∈ V ,

π(i)pij = π(j)pji. (1)

This means that in a stationary random walk, we step as often from i to j as from j to i.
Recall P denotes the transition probability matrix of a finite irreducible (there is only
one equivalence class) discrete-time stochastic process {Xt}t∈N∪{0} and a vector π =
(πj)j∈N∪{0} denotes the stationary distribution where
πj(i) = P(Xj = i). The discrete-time stochastic process is said to be reversible, if the
equation (1) is satisfied [16]. Equivalently, suppose (for given irreducible P ) that π is
a probability distribution satisfying (1). Then π is the unique stationary distribution
and the discrete-time stochastic process is reversible. Certainly, this is true because (1),
sometimes called the detailed balance equations, implies for all i ∈ V :

π(i) = π(i)
∑
j∈V

pij =
∑
j∈V

π(i) pij =
∑
j∈V

π(j) pji
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that is, π = πP and so π is the unique stationary distribution and the discrete-time
stochastic process is reversible. The name reversible comes from the following fact. If
{Xt}t∈N∪{0} is the stationary discrete-time stochastic process, that is, ifX0 has distribution

π, then (X0, X1, ..., Xt)
d
= (Xt, Xt−1, ..., X0). It is elementary that the same symmetry

property (1) holds for the t-step transition matrix P t: π(i)ptij = π(j)ptji. For a random
walk on G, it is straightforward to find a probability vector satisfying the detailed balance
condition, for every pair i, j ∈ V , π(i)

d(i)
= π(j)

d(j)
= k. But 1 =

∑
i∈V π(i) = k

∑
i∈V d(i) =

2mk and hence, k = 1
2m

. In particular, if G is d-regular, since the number of edges (i.e.
m) of a d-regular graph with n vertices is equal to n×d

2
, so for all i ∈ V :

π(i) =
d

2m
=

1

n
(2)

and π is the uniform distribution [16].
From (1) we have π(i)pij = 1

2m
, for all i, j ∈ V , so we move along every edge, in every

given direction, with the same frequency. If we are sitting on an edge and the random
walk just passed through it, then the expected number of steps before it passes through
it in the same direction again is 2m. There is a similar fact for nodes, if we are sitting at
a node i and the random walk just visited this node, then the expected number of steps
before it returns is 1

π(i)
= 2m

d(i)
. If G is regular, then this return time is just 1

π(i)
= 2m

d(i)
= n

the number of nodes.
If the graph G is non-bipartite, then for any i, j ∈ V :

lim
k→∞

P (Xk = j|X0 = i) = lim
k→∞

pkij = π(j). (3)

The convergence to π(j) does not depend on the initial vertex i. Hence, by (3) we have:

lim
k→∞

πk(j) = lim
k→∞

P (Xk = j)

= lim
k→∞

∑
i∈V

P (Xk = j|X0 = i)P (X0 = i)

=
∑
i∈V

lim
k→∞

P (Xk = j|X0 = i)P (X0 = i)

= π(j)
∑
i∈V

π0(i) = π(j)

that is, limk→∞ πk = π independently of the initial distribution. This is equivalent to
limk→∞ P k = Π where Π is a stochastic matrix with all its rows equal to π.

3 Main parameters

We now introduce the parameters of random walk discussion, which play the most im-
portant role in quantitative random walk.
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In the study of stochastic processes in mathematics, a first hit time (access time or hitting
time or discovery time) is the first time at which a given process “hits” a given subset of
the state space. Exit times and return times (time a random walk takes to leave and re-
turn to one node) are also examples of hitting times. For a discrete-time stochastic process
{Xt}t∈N∪{0}, write
Ti = min{t ⩾ 0|Xt = i} for the first hitting time on state i [1]. More generally, a
subset A of states has first hitting time TA = min{t ⩾ 0|Xt ∈ A} and last exit time
LA = max{t ⩾ 0|Xt ∈ A}. The maximal mean hitting time maxi,jEi(Tj) arises in many
contexts. The cover time for a n-state Markov chain is the random time C taken for the
entire state-space to be visited. Formally, C = maxjTj. It is sometimes mathematically
nicer to work with the “cover-and-return” time C+ = min{t ⩾ C|Xt = X0}.

Definition 1 The first hit time Hi(j) is the expected number of steps before node j is
visited, starting from node i. That is, for two states i, j ∈ V , the hitting time of j from i
is defined as Hi(j) = Ei[Tj] = E[Tj|X0 = i]. Notice that Hi(i) = 0 for all i ∈ V .

The sum κi(j) = Hi(j) +Hj(i) is called the commute time, this is the expected number
of steps in a random walk starting at i, before node j is visited and then node i is reached
again.

If vertices i and j are connected by an edge, i.e. (i, j) ∈ E, then

κi(j) = Hi(j) +Hj(i) ≤ 2m. (4)

To prove Equation (4), we do the following. The probability of traversing any edge is
equally likely, i.e. 1

2m
. Therefore, the frequency of seeing a given edge in a random walk

is 2m. Based on the condition that the walk traversed edge (i, j), the expected time
until the next traversal of edge (i, j) is 2m. But since random walks are memoryless, we
can drop the condition. The path taken by the random walk could have touched i and
gone back to j multiple times before actually taking edge (i, j). Therefore, since the total
path length is expected to be 2m, the path may go to i and come back to j in less than
2m steps. Hence Hi(j) + Hj(i) ≤ 2m. For example in circular graph, by symmetry, (4)
concludes that Hi(j) +Hj(i) = 2Hi(j) ≤ 2m and so Hi(j) ≤ m.
In a graph G on n vertices, n ≥ 13, it is shown in [3] that for any three distinct vertices i, j,
k we have κi(j)+κj(k)+κk(i) ≤ 8

27
n3+ 8

3
n2+ 4

9
n− 592

27
. There is also a way to express first hit

times in terms of commute times, due to [14]: Hi(j) =
1
2

(
κi(j) +

∑
u

π(u)[κu(j)− κu(i)]
)
.

It is easy to show that

Hi(j) =

{
1 +

∑
k pikHk(j) i ̸= j

0 o.w.
=

 1 +
1

d(i)

∑
k∈Γ(i) Hk(j) i ̸= j

0 o.w.

where Γ(i) is the set of neighbors of node i. This equation can be put together in matrix
notation. Let H = (Hij) = (Hi(j)) be a square matrix s.t. Hii = 0. Then, H + 2mD =
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J + PH. That is, (I − P )H = J − 2mD. We can not solve for H, because I − P is
singular. Let Z = (I −P +Π)−1. It is easily checked that H = J − 2mZD+ΠH. Hence,

Hi(j) =


1− 2m

d(j)
Zij + (πH)j i ̸= j

1− 2m

d(j)
Zjj + (πH)j = 0 o.w.

Thus, 1 + (πH)j = 2m
d(j)

Zjj and we can compute the access times from the fundamental

matrix Z: Hi(j) = 2m
Zjj−Zij

d(j)
. Diagonalizing

N = D−1/2PD1/2 = D−1/2DAGD
1/2 = D1/2AGD

1/2

which has the same eigenvalues as P , λ1 ≥ ... ≥ λn. Write N in spectral form N =∑n
r=1 λrv

T
r vr where the row eigenvectors vr are unitary and orthogonal. It is easily

checked that w = (
√
d(1), ...,

√
d(n)) is a positive eigenvector of N with eigenvalue 1. So

we get:

Hi(j) = 2m
n∑

k=2

1

1− λk

( v2kj
d(j)

− vkivkj√
d(i)d(j)

)
. (5)

Thus for stationary π(v) = d(v)
2m

, by using (5) we have:

∑
j∈V

π(j)Hi(j) =
∑
j∈V

d(j)

2m
· 2m

n∑
k=2

1

1− λk

·

(
v2kj
d(j)

− vkivk,j√
d(i)d(j)

)

=
∑
j∈V

n∑
k=2

1

1− λk

·

(
v2kj −

vkivkj
√
d(j)√

d(i)

)

=
n∑

k=2

1

1− λk

(∑
j∈V

v2kj − vki
1√
d(i)

·
∑
j∈V

vkj
√
d(j)

)

=
n∑

k=2

1

1− λk

(
1− vki

1√
d(i)

· 0

)
=

n∑
k=2

1

1− λk

where in the last line we used the fact that the eigenvectors v1, v2, ..., vn are orthonormal.

Also it is easy to show that: κi(j) = 2m
∑n

k=2
1

1−λk

(
vkj√
d(j)

− vki√
d(i)

)2
. Using that 1

2
≤

1
1−λk

≤ 1
1−λ2

along with the orthogonality of the matrix (vks) we get m
(

1
d(i)

+ 1
d(j)

)
≤

κi(j) ≤ 2m
1−λ2

(
1

d(i)
+ 1

d(j)

)
.

The following theorem is the result of [1, 6, 7, 8].
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Theorem 3.1. a) The first hit time between any two nodes of a graph on n nodes is
at most (

4

27

)
n3 −

(
1

9

)
n2 +

(
2

3

)
n− 1, if n

3≡ 0(
4

27

)
n3 −

(
1

9

)
n2 +

(
2

3

)
n−

(
29

27

)
, if n

3≡ 1(
4

27

)
n3 −

(
1

9

)
n2 +

(
4

9

)
n−

(
13

27

)
, if n

3≡ 2.

b) The cover time from any starting node in a graph with n nodes is at least (1− o(1))n log n
and at most (4/27 + o(1))n3.

c) The cover time of a regular graph on n nodes is at most 2n2.

Proposition 1 The probability that a random walk starting at i visits j before returning
to i is 1

κi(j)π(i)
.

Definition 2 The cover time (with initial distribution) is defined as the average number
of steps to reach each vertex. The worst case scenario is when no vertex is specified for
the start (initial distribution is not defined). In this case, we should start from the vertex
that maximizes the cover time. Hence the cover time, coveri(G), is the expected time of
a random walk starting at vertex i in the graph G to reach each vertex at least once. We
write coveri when G is understood. The cover time of an undirected graph G, denoted
coveri(G), is cover(G) = maxicoveri(G).

Theorem 3.2. Let G be a connected graph with n vertices and m edges. The time for a
random walk to cover all vertices of the graph G is bounded above by 4m(n− 1).

Proof. Consider a depth first search of the graph G starting from some vertex k and
let T be the resulting depth first search spanning tree of G. (Depth first search is an
algorithm for traversing or searching tree or graph data structures. The algorithm starts
at the root node and explores as far as possible along each branch before backtracking.)
The depth first search covers every vertex. Consider the expected time to cover every
vertex in the order visited by the depth first search. Clearly this bounds the cover time
of G starting from vertex k. Note that each edge in T is traversed twice, once in each
direction: coverk(G) ≤

∑
(i,j),(j,i)∈T hi(j). If (i, j) is an edge in T , then i and j are

adjacent, i.e. (i, j) ∈ E and thus (4) implies hi(j) ≤ 2m. Since there are n − 1 edges
in the depth first search spanning tree and each edge is traversed twice, once in each
direction, coverk(G) ≤ 4m(n−1). This holds for all starting vertices k. Thus coveri(G) =
maxkcoverk(G) ≤ 4m(n− 1).

Example 1 Determine the first hit time for two points of a path on nodes 0, 1, ..., n− 1.
The first hit time Hk−1(k) is one less than the expected return time of a random walk on a
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path with k+1 nodes, starting at the last node. This return time is 2k so,Hk−1(k) = 2k−1.
In other words,

Hk−1(k) = 1 +
1

d(k − 1)

∑
j∈Γ(k−1)

Hj(k)

= 1 +
1

2
[Hk(k) +Hk−2(k)]

= 1 +
1

2
[Hk−2(k − 1) +Hk−1(k)].

Let ak = Hk−1(k), thus solving for ak yields the recurrence ak − ak−1− 2 = 0. Solving the
recurrence equation yields ak = Hk−1(k) = 2k − 1.
Now consider the first hit times Hi(k) where 0 ≤ i < k ≤ n. In order to reach k we have
to reach node k−1, this takes, on the average Hi(k−1) steps. We have to get to k which
takes, on the average 2k − 1 steps (the nodes beyond the kth play no role). This yields
the recurrence

Hi(k) = Hi(k − 1) +Hk−1(k) = Hi(k − 1) + 2k − 1

and then

Hi(k) = Hi(k − 1) + 2k − 1

= Hi(k − 2) + (2k − 3) + (2k − 1)

= ...

= Hi(i+ 1) + (2i+ 3) + ...+ (2k − 1)

= (2i+ 1) + (2i+ 3) + ...+ (2k − 1) = k2 − i2

The second method is as follows:

Hi(k) =
k∑

j=i+1

Hj − 1(j)

=
k−i∑
j=1

Hj+i−1(j + i)

=
k−i∑
j=1

(
2(j + i)− 1

)
= 2

(k − i)(k − i+ 1)

2
+ (k − i)(2i− 1)

= (k − i)(k + i) = k2 − i2.

In particular, H0(k) = k2. Assuming that we start from 0, the cover time of the path on
n nodes will also be (n− 1)2 since it suffices to reach the other endnode.
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Example 2 Here of course we may assume that we start from 0 and to find the first hit
times, it suffices to determine H0(1). The probability that we first reach node 1 in the tth

step is clearly
(
n−2
n−1

)t−1 1
n−1

, and so the expected time this happens is

H0(1) =
∞∑
t=1

t

(
n− 2

n− 1

)t−1
1

n− 1
= n− 1.

Let Ti denote the first time when i vertices have been visited. Hence

T1 = 0 < T2 = 1 < T3 < ... < Tn.

Now Ti+1 − Ti is the number of steps while we wait for a new vertex to occur an event
with probability n−i

n−1
independently of the previous steps. Hence E(Ti−1 −Ti) =

n−1
n−i

, and
so the cover time is

E(Tn) =
n−1∑
i=1

E(Ti+1 − Ti) =
n−1∑
i=1

n− 1

n− i
≈ n log n.

The following theorem is the result of [1, 6, 7, 8].

Theorem 3.3. a) The first hit time between any two nodes of a graph on n nodes is
at most (

4

27

)
n3 −

(
1

9

)
n2 +

(
2

3

)
n− 1, if n

3≡ 0(
4

27

)
n3 −

(
1

9

)
n2 +

(
2

3

)
n−

(
29

27

)
, if n

3≡ 1(
4

27

)
n3 −

(
1

9

)
n2 +

(
4

9

)
n−

(
13

27

)
, if n

3≡ 2.

b) The cover time from any starting node in a graph with n nodes is at least (1− o(1))n log n
and at most (4/27 + o(1))n3.

c) The cover time of a regular graph on n nodes is at most 2n2.

Poposition 2 The probability that a random walk starting at i visits j before returning
to i is 1

κi(j)π(i)
.

Proof. Let Ti be the first time when a random walk starting at i returns to i and Tij the
first time when it returns to i after visiting j. Observe that Ti ≤ Tij.
Let p = P (Ti = Tij) be the probability that a random walk starting at i visits j before
returning to i. Therefore since Ti ≤ Tij, we can say that

1− p = P (Ti ̸= Tij) = P (Ti < Tij) + P (Ti > Tij) = P (Ti < Tij).

Notice that E(Ti) =
1

π(i)
= 2m

d(i)
, E(Tij) = κi(j).
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Since if Ti < Tij, then after the first Ti steps we have to walk from i until we reach j and
then return to i, we have

E(Tij)− E(Ti) = E(Tij − Ti)

= pE(Tij − Ti|Ti = Tij) + (1− p)E(Tij − Ti|Ti < Tij)

= (1− p)E(Tij) = E(Tij)− pE(Tij).

Hence, p = E(Ti)
E(Tij)

= 2m
d(i)κi(j)

= 1
κi(j)π(i)

.

Theorem 3.4. For any three nodes i, j and k of a connected, undirected graph G: Hi(j)+
Hj(k) +Hk(i) = Hi(k) +Hk(j) +Hj(i).

Proof. Essentially, this equality is a consequence of the reversibility of the Markov chain
for random walks on an undirected graph. Note that the left-hand side of the equation
in the theorem is the expected time for a random walk to go from i to j, then to k and
back to i, and similarly for the right.
Now fix a number r and begin a random walk at i, ending when i is reached again for the rth

time. Let i, i1, i2, ...ir, i be the outcome of the walk; its probability is 1
d(i)

∏r
x=1

1
d(ix)

. How-
ever, this value is, of course, the same as the probability of the reverse walk i, ir, ir−1, ...i1, i,
i.e. 1

d(i)

∏1
x=r

1
d(ix)

. Now, we claim that the number of i → j → k → i tours in one of these
walks is the same as the number of i → k → j → i tours in its reverse. To see this, note
that the greedy algorithm for finding such tours starting from the left is optimal and thus
yields at least as many such tours as we can find by listing i → k → j → i tours from the
right; the symmetric argument establishes equality. It follows that the expected lengths
of the two types of tours from i to i are the same, proving the theorem.

Note that the nodes of any graph can be ordered so that if i precedes j then Hi(j) ≤ Hj(i).
Such an ordering can be obtained by fixing any node t and order the nodes according to
the value of Hi(t) −Ht(i). Also we define the potential function as Hi(t) −Ht(i). How-
ever, from the next proposition, we can deduce the fact that there is a pure hitting time
strategy whose tournament is transitive.

Proposition 3 On any graph G, the vertex-relation given by

i ≤ j ⇔ Hi(j) ≤ Hj(i)

is transitive, i.e., constitutes a preorder on the vertices of G.

Proof. The proof is immediate from the equation of Theorem 3.4. Assume that i precedes
j in the ordering described. Then Hi(t)−Ht(i) ≤ Hj(t)−Ht(j) and hence Hi(t)+Ht(j) ≤
Hj(t) +Ht(i). By Theorem 3.4, this is equivalent to saying that Hi(j) ≤ Hj(i).

For us, the important consequence of Proposition 3 is that there is always a vertex that
is minimal in this preorder and thus satisfies Hj(t) ≤ Ht(j) for every other vertex j of G.
Such a vertex will be called hidden. (As an example, the reader may verify that a vertex
of a tree is hidden just if its average distance to other vertices of the tree is maximum.)
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This ordering is not unique because of the ties. But if we partition the nodes by putting
i and j in the same class if Hi(j) = Hj(i) (this is an equivalence relation by Proposition
3), then there is a well-defined ordering of the equivalence classes independent of the
reference node t. The nodes in the lowest class are “difficult to reach but easy to get out
of”, the nodes in the highest class are “easy to reach but difficult to get out of”. One of
the important results regarding this symmetric property is as follows:

Proposition 4 If a graph has a vertex-transitive automorphism group, thenHi(j) = Hj(i)
for all nodes i and j.
Let G = (V,E) be a connected graph and S ⊂ V . A function φ : V −→ R is a harmonic
function with boundary S if 1

d(i)

∑
j∈Γ(i) φ(j) = φ(i) holds for every i ∈ V \ S.

For a random walk, a harmonic function has the following interpretation. Suppose at
a given time k the random walk is visiting vertex i. Then E(φ(Xk+1)|Xk = i) =∑

j∈V φ(j)pij = 1
d(i)

∑
j∈Γ(i) φ(j) = φ(i). Thus, the stochastic process {φ(Xt)}t∈N∪{0}

is a martingale with respect to X and so we are playing a fair game.

Example 3 Let S = {s, t}. Let φ(i) denote the probability that a random walk starting
at i hits s before it hits t. By conditioning on the first step we have φ(i) =

∑
j∈V φ(j)pij =

1
d(i)

∑
j∈Γ(i) φ(j), for every i ∈ V \ S. Also, φ(s) = 1, φ(t) = 0. That is, φ is harmonic

with boundary {s, t}.
This example is applicable in the Gambler’s Ruin problem on a graph. A gambler enters
a casino with a plan to play the following game. At each turn he will bet 1 dollar to win
2 dollars with probability 1

2
and lose his money with probability 1

2
. He is determined to

leave either when he is ruined (i.e. he has no money left) or as soon as he collects N
dollars. Now, Consider a generalization. Suppose we have a random walk in a graph. We
are placed on some starting vertex and may walk through the maze until we reach either
vertex t or vertex s. If we hit vertex s we win 1 dollar and we get nothing if we reach
vertex t. What is the probability φi we win 1 dollar starting at vertex i? We can write
the system of equations: φ(t) = 0, φ(s) = 1, φ(i) = 1

d(i)

∑
j∈Γ(i) φ(j).

More generally, in Example 3, let S ⊂ V and suppose we have a function
φ0 : S −→ R. Let φ(i) be the expected valued of φ0(s), where s is the random ver-
tex where the random walk started at i first hits S. Again

φ(i) =
1

d(i)

∑
j∈Γ(i)

φ(j)

and φ is harmonic with boundary S.
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