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Predicting missing links in noisy protein-protein
interaction networks is an essential computational
method. Recently, attributed network embedding
methods have been shown to be significantly effec-
tive in generating low-dimensional representations of
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the nodes’features and the network’s topological in-
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of length 2 for predicting missing links in a protein-
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attributed network embedding method termed ANE-
SITI is recommended to combine protein sequence in-
formation and network topological information.
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1 Abstract continued

In addition, to improve accuracy, network topological information also considers paths
of length 3 between two proteins. The results of this experiment demonstrate that
ANE-SITI outperforms the compared methods on various protein-protein interaction
(PPI) networks.

2 Introduction

Networks are effective tools for describing and simulating complex systems that depict
interactions between diverse real-world entities. Extracting knowledge from biologi-
cal networks has recently become a popular but challenging topic [26]. Protein-protein
interaction (PPI) networks are one of the most important biological networks in which
proteins interact with each other in biological activities. In a PPI network represented
as a graph, proteins are depicted as nodes and their interactions as edges. When PPI is
considered a weighted network, the weight indicates the probable interaction of each
protein pair concerning its reliability [33]. PPIs are involved in many signal trans-
ductions between cellular processes and metabolic pathways, and other molecules in
the biological system [37]. Considering their mechanisms requires a thorough under-
standing of all the physical relations among proteins [14]. PPI data coverage is still
relatively low, and there is a lot of noisy data in the PPI dataset [20], which has led
to various computational approaches in recent years to predict potential interactions
despite major efforts in high-efficiency techniques.
Discovering possible relations in a network is an important and challenging task. In a
network, deducing missing relations based on a currently observed network or predict-
ing possible future links is called link prediction [35,37]. The application domains for
link prediction are biological, scientific collaboration, and social networks [35]. Many
link prediction methods have been implemented for different types of networks and
proposed to meet the needs of related applications [55]. Obviously, these methods can
also be employed to predict interactions in PPI networks as a single complex network.
Link prediction approaches based on network topology are grouped into three cate-
gories: 1) similarity-based, 2) probabilistic-based, and 3) embedding-based approaches
[30]. Similarity-based approaches are the simplest methods in link prediction, in
which a similarity score is initially calculated for each node pair. The score between
each pair is based on topological information. In this method, unobserved links are
assigned points based on their similarities, and any pair of nodes with a higher score is
more likely to be related. Methods such as common neighbor [44], Adamic/Adar [2],
Katz Index [25], SimRank [24], and Local Path Index [36] belong to this category.
The probabilistic-based approaches optimize an objective function to configure a model
consisting of various parameters. Yu et al. [61], Clauset et al. [13], and Guimerà et al.
[18] are examples of studies conducted on the probabilistic-based approach.
An embedding-based approach is recognized as a dimensional reduction model in
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which nodes in networks are mapped to a lower-dimensional space while maintain-
ing the neighboring structures of the nodes. This category includes methods such as
DeepWalk [48], Node2vec [17], graph factorization [4], and GraphGAN [53].
Most of the methods in the aforementioned link prediction approaches rely on net-
work topology and disregard the valuable characteristics of proteins. These features
include protein domains, protein structure information, phylogenetic profiles, gene
neighborhood, and gene expression [54]. Thus, some methods are based on protein
biological information, meaning that two proteins are more likely to interact if they
have features close to one other. With the advancement of machine learning technol-
ogy, machine learning-based methods have extensively been used to predict PPI [59].
For example, DeepPPI [15], EnsDNN [63], InterSPPI [59], and GcForest-PPI [60] are
examples of these methods.
Recently, the L3 principle was introduced, a novel approach to link prediction based
on biological information [29, 47, 42]. This principle is based on the assumption that
two proteins linked by different paths of length 3 are more likely to interact with each
other directly [29]. The L3 principle scores the relationship between the two proteins
deduces new interactions, and retains candidates with the highest scores. It can be ar-
gued that if there are multiple paths of length 2 between two proteins, this may exert
the opposite effect on their direct interaction, meaning that the L3 principle works bet-
ter than many well-known link prediction approaches, such as the Common Neighbor
[44].
Most of the methods above only consider the topological information of the network
or the protein sequence information. This study presents an attributed network em-
bedding (ANE) technique that combines sequence and topological information named
ANE-SITI. Initially, these two types of information are combined to improve the effi-
ciency of link prediction; the L3 principle and edge weights are considered in topolog-
ical information. This combination of data results in the formation of an enriched net-
work. Then, sequences of nodes are created using a biased random walk on the gen-
erated network. These sequences are moved to the skip-gram with negative sampling
(SGNS) model [39] to generate low-dimensional vectors of each protein. A binary clas-
sification algorithm on these vectors is then used to predict missing interactions.
The remainder of this paper is structured as follows. Details of related works and
background information are provided in Section 2. The link prediction approach of
this article is discussed in Section 3. In Section 4, the performance of the approach
is verified with real-world networks and other popular methods for comparison pur-
poses. Finally, conclusions and potential future issues are offered in Section 5.

3 Related works

As stated previously, diverse methods have been proposed to predict protein interac-
tions based on the properties of the proteins or the network structure. In recent years,
researchers have become interested in network embedding applications. Network em-
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bedding methods have achieved favorable outcomes compared to the other methods
in complex networks, especially downstream functions such as link prediction [40,8].
This method aims to learn a low-dimensional feature representation for every node.
Low-dimensional representations are learned to preserve network data and can there-
fore be used as a component in machine learning model construction [62]. Network
embedding methods include four models: matrix factorization, random walks, neural
networks, and attributed networks.
The classic network embedding model is a matrix factorization-based model that has
been utilized in numerous articles involving link prediction [38,1,49]. This model fac-
torizes the matrix of input data into lower-dimension matrices. For example, GraRep
[9] considers various powers of the adjacency matrix to capture higher-order graph
proximity. The optimization problem is solved by a classical matrix factorization tech-
nique, singular value decomposition (SVD) [16]. HOPE [45] also investigates high-
order proximity and applies several important similarity criteria, such as the Katz in-
dex [25]. Cho et al. [12] aimed to learn each protein’s dense low-dimensional vector
representation that best defines their patterns for the PPI networks of the input by em-
ploying a matrix factorization technique. Zhang et al. [64] proposed the drug feature-
based adjustment and represented a new matrix factorization method for predicting
possible drug-drug interactions.
The random walk-based model uses random walks to build network neighborhoods
from each node in the network and focuses on embedding nodes in low-dimension
vector spaces. This network embedding model has successfully been used for various
bioinformatics applications such as protein function prediction [65], disease-pathway
analysis [3], and PPI prediction. For example, DeepWalk is considered the first method
in this model [48]. This method was initially proposed for embedding nodes in a social
network using linguistic literature-based designs. Node2vec [17] has a flexible neigh-
borhood sampling strategy, which provides an alternative between the breadth-first
search (BFS) and the depth-first search (DFS). Liu et al. [34] combined several PPI
datasets of dissimilar types into a sole network. The study used a network embedding
method to encode protein nodes in continuous vector spaces and a seed-and-extend
method to identify protein complexes. HerGePred [58], a framework for disease gene
prediction, is another method. This approach proposes a random walk with a restart
method on a reconstructed disease-gene network to predict disease genes efficiently.
Recent years have witnessed the success of neural network models in various fields.
Several neural networks have also been introduced in the network embedding area,
such as multilayer perceptron (MLP) [40], autoencoder [10,52], generative adversar-
ial network (GAN) [53], and graph convolutional network (GCN) [11]. For example,
VGAE [28] includes a dual-layer GCN and a straightforward interior product decoder
to determine meaningful latent embedding based on the variational autoencoder [27].
SAGE [19] samples and collects features from a node’s local neighborhood and learns
embedding by long short-term memory and pooling. Lim et al. [32] suggest a new
deep-learning method for predicting drug-target communication using neural net-
works and extracting network features of intermolecular interactions straight from
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three-dimensional structural information on proteins. Decagon [66] is a method for
demonstrating the side effects of polypharmacy. This method generates a multidimen-
sional graph of polypharmacy side effects, drug-protein target interactions, and PPIs,
representing drug-drug interactions. Furthermore, it develops a convolutional neural
network to predict multi-link interconnections in multidimensional networks.
The attributed network embedding (ANE) model was recently proposed, and the cur-
rent article’s approach is based on this model. This model states that, in addition to
the observed network topological information, many nodes in the network are associ-
ated with node feature-rich information. Embedding a network is more challenging in
attributed networks because it requires learning low-dimensional representations of
nodes that preserve topological and feature information [54]. For example, ASNE [31]
uses structural proximity and attribute proximity to learn representations for social
nodes. TADW [56] is proposed to combine the text features of nodes in the DeepWalk
algorithm and demonstrates better performance. S-VGAE [57] studies PPI prediction
based on both sequence information and network structure. Pan et al. [46] employed
the convolutional network as an encoder to embed the topological information and
node content into a vector representation.

4 The proposed method

This section, describes the ANE-SITI method to predict missing links in PPI networks.
ANE-SITI consists of three phases: 1) Protein sequence information is obtained, 2) The
topological information is obtained based on the L3 principle with edges weight, and
3) A biased random walk on the generated network of a combination of these two types
of information is considered to generate low- dimensional vectors of each protein. The
main notations used are presented in Table 1, and the basic definitions are explained
as follows:

Table 1
Summary of notations

Notations Descriptions
G An undirected weighted network
V Proteins set
E Interactions between proteins set
B Sequence information similarity matrix
T Topological information similarity matrix
W ij Weight of interaction between protein vi and

protein vj
λ Balancing factor
d Length of vector representation
|V | = n Number of proteins
k Number of attributes of each protein
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Definition 1: G = (V , E, B, W ) is an undirected weighted attributed network repre-
senting a PPI network, where V , E, B, and W are described in Table 1.
Definition 2: Attributed network embedding aims to find a mapping function f :
V→R

d (d≪ |V |), that creates an embedded vector for each node in the d dimension to
preserve the topological information and protein sequence information.

4.1 Protein sequence information

In order to obtain the protein sequence information, evolutionary information is first
extracted from the Position Specific Scoring Matrix (PSSM), and then Moran autocor-
relation (MAC) [41] is used to extract features from PSSMs. PSSM is created by the
PSI-BLAST program [6] to probe the NCBI’s NR database through a cutoff E-value of
0.001 and three iterations for multiple sequence alignment to the protein sequence.
PSSM is a matrix of size L×20 in which L denotes the length of the protein amino acid
sequence, and the number 20 means 20 native amino acid types. Each element in the
matrix is represented by Pi,j that signifies the score of the residue of amino acid in the
ith place of the protein sequence being changed to amino acid type j in the biology
evolution procedure.
This paper uses MAC to transform PSSM vectors of different lengths into vectors of
equal length. MAC can be calculated as follows:

MACr,j =
1

L−r
∑L−r

i=1 (Pi,j − P j ) ( P i+r,j − P j )

1
L

∑L
i=1 ( Pi,j − P j )

2 , (j = 1,2, . . . ,20; r = 1,2, . . . ,10)

(4.1)

P j =
1
L

L∑
i=1

Pi,j (4.2)

where L denotes the length of the protein sequence, r is the distance between a residue
and its neighbors (its maximum value is assumed to be 10 [41]), Pi,j and Pi+r,j represent
the score values in ith and i+rth place of the sequence of protein being transformed to
amino acid type j throughout the evolution procedure, and P j is the average value of Pj .
Therefore, MACr,j consists of a total of 20*10 = 200 descriptor values for each protein.
For each vector, MACr,j is considered an equivalent vector MACP k(n), where n repre-
sents the protein number and k is the index (1 ≤ k ≤ 200), that is, a 200-dimensional
vector to represent each protein sequence. Finally, the sequence information similarity
matrix B is obtained with cosine similarity [50] on these vectors as follows:

Bi,j =
∑200

k=1 MACP k (i) MACP k (j)√∑200
k=1 (MACP k (i))2

√∑200
k=1 (MACP k (j))2

(4.3)
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4.2 Topological information

L3 principle is considered to obtain topological information. As previously stated, ac-
cording to the L3 principle, the greater the number of paths of length three between
two proteins, the greater the probability of a link between them. This principle outper-
forms many well-known link prediction techniques [29, 47, 42] in predicting missing
links in PPI networks. The calculation of the weight of the edges is the feature that
ANE-SITI adds to the L3 principle.
The fundamental concept underlying topological link prediction methods is the devel-
opment of a node similarity measurement that specifies the probability of a link be-
tween each pair of nodes. One of these methods is Jaccard [23], which has been widely
utilized in link prediction, which is defined as follows in unweighted networks:

Jacardu,v =
|Γ(u)∩ Γ(v)|
|Γ(u)∪ Γ(v)|

(4.4)

where Γ(j) is a series of node j neighbors in the PPI network. In weighted networks,
the following can also be considered:

Ju,v =

∑
k∈Γ(u)∩Γ(v) W u,k + Wk,v∑

m∈Γ(u) Wu,m +
∑

n∈Γ(v) Wv,n
(4.5)

where W denotes the weighted adjacency matrix.
In this study, the weighted Jaccard similarity is not used directly between proteins
i and j to predict their links, but rather between the neighbors of one protein and
another (according to the L3 principle, paths of length three are considered). Thus, the
high-weighted Jaccard similarity between the two proteins does not indicate a relation
between them but has a large proportion of reciprocal partners, that is, the ratio of
their common neighbors to all their neighbors. In other words, if the neighbors of
node i and j have high weighted Jaccard similarity, then a relation between i and j can
be predicted. Accordingly, the topological information similarity matrix is defined as
follows:

Tij =
∑

m∈Γ(i)

Jm,j +
∑
n∈Γ(j)

Jn,i (4.6)

4.3 Biased Random Walks

In this section, the two types of obtained information are combined first. To this end,
the two matrices (i.e., matrix B and matrix T ) are normalized to obtain the transition
matrix of each. In both matrices, nodes that have no relation are not considered be-
cause they do not influence the performance of the ANE-SITI. In matrix B, negative
values are assumed zero because it is considered that either the two proteins are simi-
lar that have a value greater than zero or the two proteins have no resemblance to each
other that value is assumed to be zero. In addition, to increase the efficiency of the
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ANE-SITI, only the top-m most similar proteins are measured in matrix B. Thus, each
row of the B has only an m non-zero value. Consequently, the transition matrix for the
matrix B is B(T ) as follows:

B
(T )
i,j =

Bi,j∑m
j=1Bi,j

, (0 ≤ B
(T )
i,j ≤ 1;

m∑
j=1

B
(T )
i,j = 1) (4.7)

There is no negative value in matrix T according to Eq. 4.6. In addition, the transition
matrix T is T (T ) as follows:

T
(T )
i,j =

Ti,j∑n
j=1Ti,j

, (0 ≤ T
(T )
i,j ≤ 1;

n∑
j=1

T
(T )
i,j = 1) (4.8)

The combination of these two types of information is as follows:
Ci,j = (1−λ) B

(T )
i,j + λ T

(T )
i,j (0≤λ≤1) (4.9)

where λ is a factor that controls the trade-off between protein sequence information
and topological information. Since matrix B(T ) and T (T ) are transitions, matrix C is
also a transition matrix. Using the C matrix, a weighted network is reconstructed that
combines the two types of information.
At this stage, a random walks method is employed to learn node embeddings on the
reconstructed network. The alias sampling technique, as described in Node2Vec [17],
is used to implement weighted random walks on the constructed network. These
weighted random walks perform on each protein t times with length L and create a
set of t × n protein sequences. A constant size window w is applied to slide beside
every protein sequence, and a number of training pairs (v,u) are created for each win-
dow in which v is the central protein, and u∈V are the neighboring proteins. Then, to
train protein embeddings, the training pairs are moved to the SGNS model [30]. Fi-
nally, logistic regression is used as a binary classification algorithm to predict missing
interactions on the concatenated embed vectors of each protein as an edge feature. An
outline of the ANE-SITI method, which contains the above three steps, is presented in
Fig. 1.

5 Experiments

The ANE-SITI method was compared to six cutting-edge network algorithms to deter-
mine its effectiveness and efficiency. Each algorithm’s category is specified in Table 2,
and each is described below:
L3 [29], if two proteins are similar, they tend not to be related, but if one of them is
similar to the other’s partners, this tendency is high.
DeepWalk [48] embeds network nodes using random walks in addition to the skip-
gram model.
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FSFDW [43] employs structural and non-structural properties of PPI networks in con-
junction with a biased random-walk-based embedding method to predict PPIs.
AANE [22] is an accelerated attributed network embedding algorithm that consid-
ers network topology and node attributes.
GraphSage [19] is a method based on convolutional neural networks that aggregate the
attributes of neighboring nodes.

Fig. 1. The structure of the ANE-SITI method

Table 2
Compared algorithms

Algorithm name Category
L3 Network similarity
DeepWalk Random-walk-based network

embedding
FSFDW Attributed network embedding
AANE Attributed network embedding
S-VGAE Attributed network embedding
GraphSage Neural network embedding

S-VGAE [57] uses sequence information and network structure to predict PPIs.
Most binary classification evaluation criteria are used in link prediction evaluation
because the link prediction problem can be considered a binary classification task [5].
This approach is evaluated based on three criteria with the algorithms described above:
The Area Under the Receiver Operating Characteristic curve (AUROC) demonstrates
the method’s ability to distinguish between positive and negative samples.
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The F1-score calculates the harmonic mean between precision and recall and combines
them into one metric. The F1-score can be computed using the following equations:

precision =
T P

T P +FP
(5.1)

recall =
T P

T P +FN
(5.2)

F1− score =
precision× recall
precision+ recall

(5.3)

The Matthew correlation coefficient (MCC) is a common measure of binary classifica-
tion quality. MCC is not only capable of displaying the correlation coefficient between
predicted protein pairs and the original truth, but it can also handle cases in which the
number of interacting and non-interacting proteins are of very different sizes.

MCC =
T P × TN −FP ×FN√

(TN +FN )(TN +FP )(T P +FP )(T P +FN )
(5.4)

The Precision-Recall (PR) curve and the corresponding area under the PR curve (AUPRC)
are commonly used to evaluate the classification performance when negative samples
are greater than positive ones. Therefore, it is a useful criterion to evaluate link pre-
diction models in PPI networks where the number of identified interactions between
proteins is much less than the number of unidentified interactions.

5.1 Datasets

Homo sapiens (H. sapiens), Mus musculus (M.musculus), and Saccharomyces cerevisiae
(S. cerevisiae), three real-world PPI networks, are selected from the STRINGDB [51]
dataset to assess the function of the ANE-SITI on real PPI network. In the field of
bioinformatics, STRINGDB is the most frequently used database that gathers a lot
of PPI data from different species [51]. The links with weights <0.7 are removed to
normalize and prevent false positives. The information on these three networks is
presented in Table 3.

Table 3Characteristics of the PPI Networks used in the Experiment
Network |V| |E|
H. sapiens 10216 164122
M. musculus 9507 139998
S. cerevisiae 3355 92846
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5.2 Experimental results

All identified links are established as positive instances and are separated into a train-
ing set (80%) and test set (20%) to compare the ANE-SITI method with other methods,
and these instances are then eliminated from the network, confirming that the network
remains connected. Since unidentified links are much more prevalent than identified
cases, unidentified links are randomly selected as negative instances in training along-
side an equal number of positive instances. Because the use of the same number of
positive and negative instances during the testing provides a biased picture of the ac-
tual performance of the method, the ratio of negative to positive instances is chosen to
be 10:1. For each data set, the training set and the test set are randomly selected ten
times, and then the average of these ten repetitions is considered for each metric.
Parameter settings for the six compared methods are identical to their original papers.
For the ANE-SITI, walk length, denoted by h, is 80, the dimensions of embedding
vectors, denoted by d, is 64, the number of walks per protein, denoted by t, is 10, and
the window size, denoted by w, is 10.
In Fig. 2, the ANE-SITI is compared to the other methods through the F1-score on the
three networks. As indicated in Fig. 2, the ANE-SITI obtains the largest F1-score on
H. sapiens with a value of 0.87, M. musculus with a value of 0.89, and S. cerevisiae with
a value of 0.87.
A comparison of the methods based on the AUROC is shown in Fig. 3. As seen in the
figure, the proposed method yields better results than other methods. This may be due
to the application of the composition of the L3 principle and sequence information. As
is well-known, the GraphSage method has also achieved excellent results concerning
the AUROC criterion. In principle, GraphSage has shown to be highly efficient on large
networks.

Fig. 2. F1-score of methods on the three networks
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Fig. 3. AUROC of the compared methods

According to Table 4, ANE-SITI receives the highest MCC among the three networks.
As shown in Table 4, the L3 method yields superior results to the other methods. This
indicates that the probability of a link between two proteins increases as the number
of paths of length three between them increases. In addition, ANE-SITI is superior to
L3 because it uses sequence information in its link prediction process.
Fig. 4 compares the ANE-SITI method and other methods along the Precision-Recall
curve. The ANE-SITI method outperforms the other methods, as shown in Fig. 4. As
can be seen, the area under the Precision-Recall (PR) curve, or AUPRC, is greater than
the compared methods at nearly all thresholds across the three networks.
In the last part of the evaluation, the methods are compared based on their running
times, and all methods are simulated on a workstation. Fig. 5 presents the method’s
running times on the three networks. The ANE-SITI’s running time is more than that
of some methods, which is normal, given that it obtains both sequence and topological
information. However, this time is not significantly increased, and it makes sense to
add a small amount of computational time to improve performance. On the other
hand, this time can also be reduced if obtaining sequence and topological information
is done in parallel. As seen, the DeepWalk and L3 methods have the minimum running
time due to calculating only the structural information, and the GraphSage method has
the maximum running time due to using a neural network.

Table 4. MCC of methods on the three networks
H. sapiens M. musculus S. cerevisiae

ANE-SITI 0.78 0.73 0.75
L3 0.74 0.72 0.74
DeepWalk 0.66 0.71 0.71
FSFDW 0.70 0.68 0.66
AANE 0.67 0.70 0.69
GraphSage 0.75 0.70 0.70
S-VGAE 0.72 0.68 0.74
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Fig. 4. Precision-Recall curves of the compared methods

As demonstrated in this section, ANE-SITI is more effective than other methods. In
addition to considering the specific information of proteins in the sequence informa-
tion combined with the topological information that creates a new enriched graph,
the weight of paths of length 3 between two proteins is also used in the topological
information, which has increased the efficiency of ANE-SITI.

Fig. 5. Running time of the compared methods
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Fig. 6. Influence of the λ parameter on ANE-SITI

5.3 Parameter sensitivity

In this section, the ANE-SITI’s sensitivity is examined concerning two factors on the
F1-score criterion, that is, the harmonic value λ and the length of vector representation
d. The values of the other variables are permanent when examining these two factors,
according to Section 4.2.
The harmonic factor λ balances the contribution of protein sequence information and
topological information. This ranges from 0.1 to 0.9 for determining its effectiveness.
When low, protein sequence information has a significant impact on ANE-SITI perfor-
mance. By increasing it, topological information exerts a meaningful effect. Examining
the λ parameter on the three networks is presented in Fig. 6. As can be seen, as λ in-
creases, so does the F1-score. This means that the effect of topological information
on the efficiency of ANE-SITI is more than that of the protein sequence information.
The best λ value is 0.8 on the H. sapiens and M. musculus networks and 0.7 on the
S. cerevisiae network, and the value of the F1-score decreases somewhat for higher λ
values.
To examine the parameter d, it varies from 24 to 29 on the three networks. Fig. 7
displays that as the value of d increases, so the value of the F1-score does, and from
one place onwards, by increasing the value of d, the value of the F1-score remains
almost constant. Although the best results on different networks are obtained with
different dimensional parameters, 27 is a relatively good choice in practice.
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Fig. 7. Influence of the d parameter on the ANE-SITI

6 Conclusion

Predicting missing links in PPI networks is important for understanding cell activity.
This paper presents an attributed network embedding method termed ANE-SITI that
can efficiently predict missing links in incomplete and noisy PPI networks. To this
end, the topological information of the network and the protein sequence information
are combined, and the L3 principle with weights of edges is considered in topologi-
cal information to increase the link prediction efficiency. L3 Principle states that the
greater the number of paths of length 3 between two proteins, the greater the likeli-
hood of a link between the two proteins. This information incorporation generates an
enriched network. Then, sequences of nodes are created using a biased random walk
on the generated network. These sequences are moved to the SGNS model to generate
low-dimensional vectors of each protein. Finally, these vectors are used to predict the
missing links between proteins. The experiments conducted in this study prove that
ANE-SITI outperforms the compared link prediction methods in three real-world PPI
networks. Future research may investigate the ANE-SITI method for linking predic-
tion for additional biological interaction networks.
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