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ABSTRACT ARTICLE INFO

The Kalman-Bucy filter is studied under different sce-
narios for observation and state equations, however,
an important question is, how this filter may be ap-
plied to detect the change points. In this paper, using
the Bayesian approach, a modified version of this filter
is studied which has good and justifiable properties
and is applied in change point analysis.
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1 Introduction

The Kalman-Bucy filter is one of the widely used techniques applied in the filtering
scope. It has too applications in control engineering, fault detection, change point
analysis, tracking problems proposed in many fields of research such as engineering,
statistics and economics. To derive the traditional form of this filter, the observation
equation is considered as a regression model without intercept term with time varying
slop βt while the state equation is supposed to be a first order auto-regressive AR(??)
process. In the current note, following Guo and Meyn (1986), the observation equation
is also a discrete time AR(??) process for single variable yt as

yt = βtyt−1 + εt; t ≥ 2,

at which εt’s are independent random variables with zero mean and finite variance
σ2 <∞, denoted by εt ∼ (0,σ2). Three scenarios for specifying the state process βt are
considered. The main aim of the current paper is studying the change point analysis
in βt throughout the passing time. Similar problem is studied by Habibi et al. (2017)
using the least square method and construction of adaptive filters. To this end, three
types of βt are considered including
(i) βt’s are independent and identically distributed with zero mean and variance v2 <
∞, i.e., βt ∼ (0,v2),
(ii) the AR(??) process βt = αβt−1 + ζt, where ζt ∼ (0,v2) and α , 0 and |α| < 1, and
finally,
(iii) the random walk process βt = βt−1 + ζt, with ζt ∼ (0,v2).
Notice that cases (i) and (iii) are special cases of (ii) with α = 0 and α = 1, respectively.
In the current paper, for simplicity arguments, a simplified version of Kalman-Bucy
filter is introduced and used. To find the filter, first, it is assumed that εt’s and ζt’s
are normally distributed and using the Bayesian theorem, the filter is derived. How-
ever, this filter is also achievable using the minimum variance method without the
assumption of normality. For extracting the Kalman-Bucy filter, often, the conditional
expectation E(βt |F

y
t ) is computed and since it is function of βt−1, maximization is taken

over βt−1, to remove its effect. Here, it is assumed that βt−1 is known, and the filter is
derived. Thus, the maximization step is deleted. As soon as, the filter is computed,
under the some mild conditions, the assumption of βt−1 being known is relaxed.
The corresponding filter is β̂t = E(βt |F

y
t ,βt−1), where F

y
t is the information set made by

{ys, s = 1,2, . . . , t}. Under case (ii), it is seen that β̂t is a weighted linear combination of
moment estimator αβt−1 and unbiased estimator yt

yt−1
, where weights of each estimator

depends on its accuracy (its variance). Similar results are proposed in credibility the-
ory of insurance field. Similar filters are obtainable in cases (i) and (iii). Using error
and scenario analyses and under some mild conditions, the assumption of known βt−1
is relaxed and recursive relation for β̂t based on β̂t−1 is proposed. Some advantages of
this filter are its simple usage and derivation, its mixture structure with mixing pro-
portion with related to accuracy of each estimator directly, the use of Bayesian method
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which itself have good advantages such as updating procedures as soon as new obser-
vations come, and useful interpretations. As stated, this filter is obtainable using the
minimum variance method without assumption of normality. This filter is achievable
for change point analysis using state equation (iv) βt = (1− Jt)βt−1 + JtZt where Jt = 1 if
a change has occurred in βt−1 and βt = βt−1 +Zt, while if Jt = 0, then no change has hap-
pened and βt = βt−1. Here, Zt is a sequence of independent variable with Zt ∼ (µz,σ2

z ).
This model is studied by Yao (1985) for the change point analysis in βt.
The main idea of this filter comes from the Bayesian approach where the likelihood is
derived from the observation equation and the prior is obtained from the state equa-
tion. It is seen that this filter has interesting properties and interpretations. This paper
is organized as follows. In the next section, the filter proposed and error and scenario
analyses are given for cases (i) - (iii). In section 3, the filter is derived for case of (iv)
and it is designed to study the change point analysis in βt. Finally, at the end of this
section, conclusions are proposed.

2 Filter features

As stated in introduction, the filter is given by β̂t = E(βt |F
y
t ,βt−1). Under (ii), it is seen

that, given βt−1, the βt has prior normal distribution with mean αβt−1 and variance v2.
For the likelihood part of Bayesian formula, notice that given yt−1, the observation yt
has normal distribution with mean βtyt−1 and variance σ2. 2.1. Filter derivation. The
posterior distribution of βt, given βt−1, yt and yt−1 is proportional to (notations f and
∝ serve as density function and algebraic proportion)

f (βt |βt−1, yt, yt−1) ∝ f
(
βt

∣∣∣ βt−1

)
f (yt |βt, yt−1)

∝ exp{ −1
2σ2 (yt − βtyt−1)2}exp{ −1

2v2 (βt −αβt−1)2}

∝ exp{ −1

2γ2
t

(
βt −µt)2

}
,

2.1 Filter derivation

The posterior distribution of βt, given βt−1, yt and yt−1 is proportional to (notations f
and ∝ serve as density function and algebraic proportion)

f (βt |βt−1, yt, yt−1) ∝ f
(
βt

∣∣∣ βt−1

)
f (yt |βt, yt−1)

∝ exp{ −1
2σ2 (yt − βtyt−1)2}exp{ −1

2v2 (βt −αβt−1)2}

∝ exp{ −1

2γ2
t

(
βt −µt)2

}
,
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where γ−2
t = y2

t−1
σ2 + 1

v2 and µt = γ2
t

(
ytyt−1
σ2 + αβt−1

v2

)
. Thus, the posterior distribution is

normal with mean µt and variance γ2
t . Hence,

β̂t = µt =
ytyt−1
σ2 + αβt−1

v2

y2
t−1
σ2 + 1

v2

=

w

(
yt
yt−1

)
+ (1−w) (αβt−1) ,

where the weight is given by w = y2
t−1

y2
t−1+θ2 ∈ (0,1) at which θ2 = σ2

v2 > 0 is the variance

ratio of observation yt over the variance of βt (in the sense of prior). In the other words,
w

1−w = y2
t−1
θ2 . It is seen that β̂t is a linear combination of unbiased estimator yt

yt−1
(notice

that yt
yt−1

= βt + εt
yt−1

) and the moment estimator αβt−1. Notice that if βt−1 is known,, in
practice, motivated by the state equation, the estimator αβt−1 is suggested for estimat-
ing βt by practitioners. In this way, the estimation from the observation equation is
ignored, while the Bayesian method advises a linear combination of both estimators.
Here, two points are given. The following proposition gives a brief summary of above
discussion.

Proposition 1. Under the model (ii), the filter is given by

w

(
yt
yt−1

)
+ (1−w) (αβt−1) ,

Here, w = y2
t−1

y2
t−1+θ2 at which θ2 = σ2

v2 .

2.2 Two points

Here, properties of filter are studied.
(a) Errors analysis. Here, some points about the error analysis are given.
(a1) Here, it is seen that the filter can be derived using the minimum variance criterion
and by canceling the normality assumption. To this end, suppose that εt’s and ζt’s are
not normal, however, consider a linear combination β̂t = w

(
yt
yt−1

)
+ (1−w) (αβt−1). No-

tice that yt
yt−1

= βt + εt
yt−1

and αβt−1 = βt − ζt. Thus, β̂t = w
(
βt + εt

yt−1

)
+ (1−w) (βt − ζt) =

βt +et, where et = w εt
yt−1
−(1−w)ζt. Thus, β̂t−βt = et and E (et) = 0 and E

(
e2
t

)
= var (et) =

w2σ2

y2
t−1

+ (1−w)2v2. By minimizing the mean squared error E(β̂t − βt)
2

= E(e2
t ) with re-

spect to w again the weight of Bayesian method is derived. This fact makes us to relax
the normality assumption of errors terms εt’s and ζt’s.

(a2) Here, the assumption of known βt−1 is relaxed. Again, notice that E(β̂t − βt)
2 ≤

v2(1 + θ2

y2
t−1

). Therefore, as θ → 0 (for example, σ → 0), then, E(β̂t − βt)
2 ≤ v2. As soon
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as, v → 0, then E(β̂t − βt)
2

tends to zero. In this cases, the β̂t is a consistent estimator
for βt. Also,

β̂t = w

(
yt
yt−1

)
+ (1−w)α

(
β̂t−1 − et−1

)
=

w

(
yt
yt−1

)
+ (1−w)αβ̂t−1 − (1−w)αet−1.

For the cases of σ,v→ 0, then E(e2
t−1)→ 0, thus, et−1 ≈ 0, with probability one. There-

fore,

β̂t = w

(
yt
yt−1

)
+ (1−w)αβ̂t−1.

(a3) Here, the analysis variance procedure is proposed. Notice that yt − βtyt−1 = yt −
β̂tyt−1 + (β̂t − βt)yt−1 and this fact that E(yt − βtyt−1)2 = σ2. About the first term, by
replacing β̂t in this term, one can see that

yt − β̂tyt−1 = yt − yt−1w

(
yt
yt−1

)
− yt−1 (1−w) (αβt−1) =

= (1−w) {yt −αβt−1yt−1} =

= (1−w)
{
yt − (βt − ζt)yt−1

}
=

(1−w)
{
εt + ζtyt−1

}
.

Thus, E(yt − β̂tyt−1)2 = (1−w)2
(
σ2 + v2y2

t−1

)
= v2(1−w)2(θ2 + y2

t−1). By replacing w =
y2
t−1

y2
t−1+θ2 , it is seen that

E(yt − β̂tyt−1)2 = σ2 (1−w) .

About the second term, it is seen that
(
β̂t − βt

)
yt−1 = yt−1et. Thus, E(yt−1et)2 = y2

t−1var(et).

Again, it easy to see that E(
(
β̂t − βt

)
yt−1)2 = σ2w.

From, the analysis of variance perspective, it is seen that, as w approaches to one (zero),
then the variance of second (first) term has effective role in E(yt − βtyt−1)2.
(b) Scenario analysis. Here, some points about the scenario analysis are given.
(b1) Here, the effect of extreme values of hyper-parameter θ2 is studied. Notice that
as θ2 goes to the infinity; i.e., as the variance (accuracy) of observation yt gets large
(small) with respect to the variance (accuracy) state βt, then the weight assigned to
unbiased estimator is larger than the moment estimator. Conversely, as θ2 tends to
zero, then w goes to zero.
(b2) Also, notice that, all above results can be extended to the cases of (i) and (iii), by
assuming α = 0 and α = 1, respectively.
(b3) To study the effect of outlier data yt−1 in w, consider the function w (z) = z

z+θ2 , z > 0.
This function is increasing in z. Thus, as z approaches to infinity, then w (z) converges
to 1. So, if there is an outlier at time t − 1, then w (z) goes to the 1 and this fact may
cause the results become spurious.
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3 Filter under Changing βt

Under the model (iv), then, βt = (1− Jt)βt−1+JtZt. Let πt = P
(
Jt = 1

∣∣∣ yt) be the posterior
of probability of having change in βt at time t, where using the Bayesian theorem, we
have,

πt =
pf

(
yt

∣∣∣ Jt = 1
)

pf
(
yt

∣∣∣ Jt = 1
)

+ (1− p)f
(
yt

∣∣∣ Jt = 0
) .

Notice that, the logit function of πt, i.e., logit (πt)B log
(

πt
1−πt

)
is given by

logit (πt) = logit (p) + log(Λ),

where is the likelihood ratio of Λ =
f (yt |Jt=1)
f (yt |Jt=0) . It is easy to see that, under the nor-

mality assumption, given βt−1, yt−1 and Jt = 0, then, yt has normal distribution with
mean βt−1yt−1 and variance σ2, and under the assumption of Jt = 1, then it is normally
distributed with mean µzyt−1 and variance σ2 + σ2

z y
2
t−1. To derive the filter, notice that

βt = β∗t =
{

βt−1 if Jt = 0,
βt−1 +Zt if Jt = 1.

Let µ∗ = E(β∗t ) and σ2∗ = var(β∗t ). Here, the filter is given by

β̂∗t = w∗
(
yt
yt−1

)
+ (1−w∗)µ∗,

where w∗ = y2
t−1

y2
t−1+θ2∗ at which θ2∗ = σ2

σ2∗ . The following lemma, gives the values of µ∗ and

σ2∗.
Lemma 1. µ∗ = βt−1 + (1−πt)µz and σ2∗ = πt (1−πt)µ2

z +πtσ
2
z .

Proof. One can see that

E
(
β∗t

∣∣∣ Jt) =
{

βt−1 if Jt = 0,
βt−1 +µz if Jt = 1.

Then, µ∗ = E
(
E
(
β∗t

∣∣∣ Jt)) = πtβt−1 + (1−πt) (βt−1 +µz) = βt−1 + (1−πt)µz. Again,

var
(
β∗t

∣∣∣ Jt) =
{

0 if Jt = 0,
σ2
z if Jt = 1.

Using the formula σ2∗ = var
(
E
(
β∗t

∣∣∣ Jt))+E(var
(
β∗t

∣∣∣ Jt)), it is seen that

σ2∗ = πt (1−πt)µ
2
z +πtσ

2
z .
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Proposition 2. Under the model (iv), the filter is given by

β̂∗t = w∗
(
yt
yt−1

)
+ (1−w∗)µ∗,

where µ∗ = βt−1 + (1−πt)µz and σ2∗ = πt (1−πt)µ2
z +πtσ

2
z . Here, w∗ = y2

t−1
y2
t−1+θ2∗ at which

θ2∗ = σ2

σ2∗ .

4 Conclusions

The changing behavior of parameters of models and studying its effects on a modified
version of Kalman-Bucy filter is studied. It is seen that, this modified filter have good
properties and it is applicable in change point analysis.
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