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ABSTRACT ARTICLE INFO

The imperialist competitive algorithm (ICA) is devel-
oped based on the socio-political process of imperial-
ist competitions. It is an efficient approach for single-
objective optimization problems. However, this algo-
rithm fails to optimize multi-objective problems (MPOs)
with conflicting objectives. This paper presents a modi-
fication of the ICA to different multi-objective problems.
To improve the algorithm performance and adapt to the
characteristics of MOPs, the Sigma method was used
to establish the initial empires, the weighted sum ap-
proach (WSum) was employed for empire competition,
and an adaptive elimination approach was used for ex-
ternal archiving strategy. The results indicated that the
suggested algorithm had a higher performance compared
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Abstract continued
to other algorithms based on diversity and convergence characteristics.

1 Introduction

Optimization problems have become more important because they arise naturally in most
disciplines and can pose significant challenges for researchers. This class of problems can
be characterized by either single- or multi-objective problems, while most of the real world
optimization problems are multi-objective ones. However, multi-objective optimization
problems are more difficult than single-objective problems, because there are often con-
flicts between various objective functions that must be optimized, simultaneously. The
balance between the values of different objective functions will result in a set of optimal
solutions called the Pareto front. Considering any solutions on Pareto front, no feasible
solution exists in the search space that improves one or more objectives without simulta-
neously degrading at least one of the others. Hence, any multi-objective algorithm should
aim at finding the Pareto front of these non-dominated solutions.
Optimization problems are being successfully addressed by bio-inspired algorithms such
as the genetic algorithm (GA), and the particle swarm algorithm (PSO). The Imperialist
competitive algorithm (ICA) is another kind of evolutionary algorithms for optimization
problems that is more intelligent than biological behavior. The strategy is built upon
an original idea, inspired by social and political events to develop a strong optimization
strategy [4]. At present, this algorithm has been widely used to various fields, including
artificial intelligence [12, 1], power electronic engineering [20], supply chain management
[2, 19, 17, 21], vehicle scheduling [14, 15, 29], production process scheduling [38, 42, 24],
design of thermal systems [26], design of linear induction motors [40], and design of skeletal
structures [22], etc.
In recent years, a number of studies have been carried out regarding solving multi-objective
optimization problems using ICA. Enaytifar [13] proposed the multi-objective imperial-
ist competitive algorithm (MOICA). The numerical results of their proposed algorithm
indicate that MOICA shows significantly higher efficiency in terms of accuracy and main-
taining a diverse population of solutions compared to other prominent existing algorithms
such as the NSGA-II and MOPSO. In addition, considering computational time, it is
slightly faster than MOPSO and significantly performs better than NSGA-II. Ghasemi
[16] presented a Gaussian Bare-bones multi-objective Imperialist Competitive Algorithm
(GBICA) and its Modified version (MGBICA) for optimal electric power planning in the
electric power system. In that paper, a new attraction policy was introduced in empire
assimilation, in which colonies of other imperialists, apart from the strongest imperial-
ist, randomly move toward three different directions: their own imperialist, the strongest
imperialist, and both of them. Using this attraction policy, the population diversity con-
tinuously changes among imperialists, and their search power for the global optimum
is greatly increased. Moreover, Sharifi [35] introduced a multi-objective modified ICA
for a brushless DC motor optimization problem. In the proposed algorithm, a new step
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requiring all countries to move toward the best imperialist was added to the standard
version of the ICA, and some reforms in this movement were also made. Their simula-
tion results, considering efficiency and total mass as two objective functions, show the
superiority of the proposed algorithm in the obtained Pareto fronts compared to the sam-
ples found by the SPEA2, NSGAIII, MOPSO, and MOICA. In addition, Nejlaoui [32]
developed a hybrid multi-objective imperialist competitive algorithm and Monte Carlo
method for designing a rail vehicle’s robust safety under uncertain design parameters. In
this robust optimization of rail vehicle safety, the derailment angle and standard deviation
were considered, simultaneously. Their obtained results demonstrated that robust design
appreciably reduces the sensitivity of rail vehicle safety to design parameters uncertain-
ties comparison to design parameters deterministic. Moreover, Piroozfard [33] developed
a new multi-objective ICA to solve a multi-objective job shop scheduling optimization
problem with low carbon emissions, with the goal of simultaneously minimizing carbon
footprint and total late work. Their numerically obtained results and comparison metrics
shown the effectiveness and efficiency of the proposed multi-objective imperialist com-
petitive algorithm in finding high-quality non-dominated schedules as compared with the
MOPSO and NSGA-II. Furthermore, Khanali [Khanali[23] studied the energy flow and
environmental emissions from walnut orchards in Iran’s Alborz province, as well as their
simultaneous optimization using a newly modified MOICA. The results obtained by them
reveal that the orchardist can ensure optimal conditions with timely maintenance. In
addition, this new colonial competition algorithm can not only provide the optimal pat-
tern for walnut production but can also be used for different crops around the world.
Li [34] developed an imperialist competitive algorithm with feedback in order to solve
energy-efficient flexible job shop scheduling problems with transportation and sequence-
dependent setup times, which is a complex multi-objective problem. In this algorithm, an
assimilation and adaptive revolution mechanism with feedback are used. Meanwhile, an
imperialist competition is presented for transferring solutions between empires to improve
search capabilities. Luo [25] proposed a modification of the ICA to solve multi-objective
optimization problems with hybrid methods. This research endeavors to adapt to the
characteristics of multi-objective optimization problems by improving the mechanism for
the formation of initial empires, colony allocation, and empire competition, and also to
introduce an external archiving strategy.
This paper aims to develop a version of the single-objective ICA to solve problems with
multiple objectives. There are three main strategies to accomplish this goal: using the
Sigma method in empire formation to improve convergence, employing the WSum method
in competition between empires to maintain diversity, and using an elimination approach
to limit the number of non-dominated solutions in the archive. The performance of the
proposed algorithm is compared using four well-known quality indicators against the six
algorithms and a set of well-known high-dimensional benchmark functions. The results
show that the proposed algorithm produces better solutions in terms of convergence and
distribution along the Pareto front.
The remainder of this paper has the following structure. The general stages of the original
ICA are briefly explained in the first section. In the second section, the mathematical
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model of multi-objective optimization problems is presented. The third section provides
details about the proposed algorithm. The fourth section introduces the qualitative and
quantitative results, performance metrics, comparison algorithms, simulating settings,
and relevant discussion. Finally, the paper ends with a conclusion.

2 Brief Description of the ICA

Various evolutionary algorithms have been proposed by researchers to solve optimiza-
tion problems. Each of these algorithms is based on a different evolutionary mechanism
inspired by nature, such as genetic evolution in GA, swarm intelligence in PSO and
ant colony optimization, or the material annealing process in simulated annealing. Ac-
cordingly, the ICA method is a general searching algorithm based on the socio-political
relationship of countries, which was proposed by Lucas et al. [4]. This algorithm has
demonstrated excellent capabilities in both convergence rate and global optimal achieve-
ment. ICA starts by generating a random population of individuals (called a country) in a
similar way to other evolutionary algorithms. In the initialization step, the most powerful
countries (with lower costs) are selected as imperialists, and other countries are considered
to be the colonies of the imperialists. Then the colonies are divided among imperialists
according to imperialist power, and empires are created. Following the division of all
colonies among the imperialist countries, all colonies move toward their relevant imperi-
alist through a process known as assimilation. If the colony becomes stronger than the
relevant imperialist in the assimilation policy of the empire, the position of the imperialist
and the colony will change. This algorithm’s foundation is imperialist competition among
these empires, and then competition among empires begins. In this process, the survival
of an empire depends on its power to take over colonies from other empires, and the power
of larger empires increases while empires with less power collapse. The weakest empire
will be eliminated from the competition, and this algorithm will continue until only one
empire remains along with some colonies, which are close to the imperialist country in
terms of position. Figure 1 shows the flowchart of the ICA method.

2.1 Generating initial empires (Initialization)

The basic goal of the optimization process is to determine values for the variables that
minimize or maximize the objective function while satisfying the constraints. In the ICA
method, a ’1 ∗Nvar’ array called country is introduced as follows:

country = [P1, P2, . . . , P(Nvar)] (2.1)

where Pi represents a variable of the problem that is interpreted as a socio-political charac-
teristic of a country, such as welfare, culture, religion, and language. The optimal solution
to an optimization problem is the one with the maximum power or the minimum cost that
is determined by evaluating the objective function (f) for variables (P1, P2, . . . , P(Nvar)).
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Figure 1: Flowchart of the original ICA
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costi = f(countryi) = f(P1, P2, . . . , P(Nvar)) (2.2)

In the first step of the algorithm, the initial population with size Npop is generated. Next,
Nimp of the best countries, having the lowest cost function values, must be selected as
the initial empire’s leaders, or imperialists. The remaining countries, Ncol (Npop −Nimp),
which are considered as colonies, are divided into empires based on imperialist power.
The normalized cost of the nth imperialist is given by:

Cn = max(ci)− cn (2.3)

where cn is the cost of nth imperialist, and Cn is the normalized cost of nth imperialist.
An imperialist with a larger cost (i.e. a weaker or low-power imperialist country) has a
smaller normalized cost. Therefore, the normalized power of each imperialist is calculated
as follows:

Pn =

∣∣∣∣∣ Cn∑i=1
Nimp

Ci

∣∣∣∣∣ (2.4)

The initial colonies are distributed among empires based on their normalized power.
Therefore, the initial number of colonies for the nth empire is calculated by:

N.C.n = roundPn.Ncol (2.5)

whereN.C.n is the number of initial colonies possessed by the nth imperialist, Ncol presents
the total number of existing colonies in the initial countries, and round is a function that
gives the nearest integer of a fractional number. Therefore, each imperialist receives a
number of colonies proportional to its power.

2.2 Assimilation: Movement of colonies toward their imperialist

After forming initial empires, the assimilation process begins. As shown in Figure 2,
countries move toward their imperialists in this process, and this movement is defined by
two parameters, x and θ.
Moreover, the colony moves x distance along with d direction toward their corresponding
imperialist. Accordingly, x is a random variable with uniform distribution, and this
movement can be represented by:

x ∼ U(0, β × d) (2.6)

where d is the distance between the colony and the imperialist, β is an assimilation
coefficient, and U is the uniform distribution function that takes the two parameters β
and d to generate a random number between 0 and β × d. The deviation parameter is
denoted by θ and follows a uniform distribution:

θ ∼ U(−γ, γ) (2.7)
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Figure 2: Colonies’ movement toward their corresponding imperialist

where γ is an arbitrary angle [14]. During the process of assimilation, there is always the
possibility that a colony ends up in an even better position than its imperialist. In this
case, the colony and the imperialist swap their positions. Subsequently, the algorithm is
continued with the new imperialist, and the colonies move toward it.

2.3 Revolution

In the real world, all the colonies of an empire aren’t attracted by the imperialists in terms
of social, cultural, economic and political characteristics, and might be some colonies that
resist to be absorbed by imperialists. In fact, the power of some countries might change
suddenly due to reformations in their characteristics. This condition in the ICA algorithm
is called ”revolution”. Based on this phenomenon, some colonies’ positions in the search
space will suddenly change, which increases exploration and prevents the early convergence
of countries to local optimum positions. The revolution rate in the ICA illustrates the
percentage of colonies that randomly change their position.

2.4 Total power of empires

After implementation of the assimilation policy, a total power is assigned for each empire
that is equal to the power of the imperialist plus a percentage of the power of the colonies.
However, the effect of colonies on the total power is negligible [15, 29]. Therefore, by
considering the above both factors, the total power of an empire can be defined as:

T.C.n = Cost(imperialistn) + ζmean{Cost(colonies of empiren)} (2.8)

where T.C.n is the total cost of the nth empire, and ζ is a positive number that has a value
between zero and one. In most applications, a small value of 0.1 or 0.15 is considered as
an appropriate choice. To model the competition process among empires, the normalized
total cost of an empire is calculated as follows:
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Figure 3: Imperialistic competition

N.T.C.n = max{T.Ci} − T.C.n (2.9)

2.5 Imperialistic competition

The imperialistic competition process begins after determining the normalized total cost
of each imperialist. This competition in the ICA algorithm works by choosing the weakest
colony from the weakest empire and making a competition between all empires to possess
this colony Figure 3. The possession probability of each empire, which is proportional to
its power, could be computed by:

PPn =
N.T.C.n∑i=1
Nimp

N.T.Ci

(2.10)

3 Mathematical model of multi-objective problems

Many real-world industrial domains are concerned with large and complex optimization
problems involving various conflicting objectives, either to be minimized or maximized,
that should be considered simultaneously. Assuming all the objective functions to be
minimized, a multi-objective linear problem can be mathematically defined as follows
[38, 42]:

Minimize f⃗(x⃗) = [f1(x⃗), f2(x⃗), . . . , fk(x⃗)] (3.1)

Subject to:
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gi(x⃗) ≤ 0 i = 1, 2, . . . ,m

hj(x⃗) = 0 j = 1, 2, . . . , p

where x⃗ = [x1, x2, . . . , xn]
T represents decision variables vector, fi : Rn → R, i = 1, 2, . . . , k

are the objective functions, and gi, hj : Rn → R, i = 1, 2, . . . ,m j = 1, 2, . . . , p are in-
equality and equality constraints, respectively.
The desired solution, known as a Pareto optimal solution, takes the form of ”trade-off”
solutions between objective functions, with an improvement in one causing a worsening
in at least one of the other functions. Accordingly, instead of producing a single solution,
a set of optimal solutions called the Pareto optimal set or Pareto optimal solutions is
produced [24, 26].
In single-objective optimization problems, there is a single search space, while the search
space in multi-objective optimization problems includes the space of design variables and
the objective space. Hence, diversity can be defined in both of these spaces. In multi-
objective optimization problems, solutions that are close to the true Pareto front are
desirable. For a set of objective functions that do not conflict with each other, the Pareto
front set would have only one member. While there is a Pareto optimal front for a set
of objective functions that conflict with each other. Many multi-objective optimization
algorithms use the concept of dominance in their searches. A definition of dominated
points is given below.
Solution S1 dominates the other solution S2 if both conditions 1 and 2 are satisfied:

1. In all objectives, solution S1 outperforms or is similar to solution S2.

2. In at least one objective, solution S1 is clearly superior to solution S2.

Based on the above two conditions, if S1 dominates S2, then it is considered a better
solution. Among a set of solutions of dominant and non-dominated, those solutions that
does not dominate each other are called Pareto front solutions. These non-dominated
solutions are joined by a curve defined as the Pareto optimal front.

4 Proposed multi-objective imperialistic competitive

algorithm

The ICA, as a successful method for single-objective optimization problems, cannot si-
multaneously manage conflicting objectives in multi-objective optimization problems. In
order to extend single-objective ICA to solve multi-objective optimization problems, some
modifications should be made to face the fact that the solution of a multi-objective prob-
lem is a set of non-dominated solutions. There are modifications to be taken into account
when a multi-objective evolutionary algorithm is developed:
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1. How to maintain the non-dominated solutions found during the search? It is
also desirable to maintain the diversity of the final solutions.

2. How to select countries to be used as imperialists or colonies? In other words,
how could the merit of each individual be determined based on all the objective functions?

To deal with the first issue, as has usually been done in some multi-objective evolutionary
algorithms, an external archive or repository is used to store the non-dominated solutions
searched in the process of solving the optimization problems. In this paper, an external
archive is also employed to store non-dominant solutions, and its content will be reported
as the final output of the algorithm. Ideally, all non-dominated solutions would be re-
tained in the archive. However, by doing this, its size would quickly increase, especially
when dealing with many objectives. To avoid this problem, the size of the archive must be
limited. In this paper, to limit the number of non-dominated solutions in the archive, an
adaptive elimination approach is employed, which has influences on computational time,
convergence, and diversity of solution. This approach would be described in Section 4.3.

Dealing with the second issue is not a trivial task because single-objective ICA does not
have the ability to determine the merit of each individual by considering all objectives. An
assessment of this merit is necessary to specify imperialistic countries or colonies, through
computing the power of imperialistic countries to form empires and to calculate the to-
tal power of empires for empire competition. To determine the merit of each individual,
fast non-dominated sorting would be implemented in the proposed algorithm according
to Section 4.1.1 of this paper in order to rank the solutions and identify imperialists.
Moreover, this algorithm takes advantage of an empire formation approach by applying
the Sigma method to introduce more convergence. The initial empires are established by
utilizing the Sigma method, which is explained in Section 4.1.2. Moreover, when the ICA
is applied to high-dimensional or complex multimodal functions, it has the drawback of
being trapped in local optimum solutions. As a means of overcoming this drawback and
dealing with the diversity of solutions, the Wsum method is used for imperialist compe-
tition in order to take over colonies from other empires. This method will be explained
in Section 4.2.1.

In summary, the framework of the proposed multi-objective imperialist competitive al-
gorithm is as follows: First, the initial countries are generated randomly. Then, each
country is ranked using fast non-dominated sorting technique that takes into account all
objectives, and the most powerful countries are saved in archives as imperialists, while
the remainders are considered to be colonies of the imperialists. Using the Sigma method,
colonies are assigned to imperialists once the type of a country is determined (imperialist
or colonial). Following the formation of the initial empires, the process of the assimilation
and revolution begins, and colonies move toward their relevant imperialist, similar to the
single objective ICA. Moreover, if a colony in the moving process achieves a better po-
sition than its imperialist and subsequently dominates it, then the imperialists exchange
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their positions with that colony. After all the countries are updated, the external archive
is updated as well. As the final step of this algorithm, in order to avoid the concentration
of solutions in one region of the Pareto front, the WSum method is applied to increase the
diversity into the search process. In the following, in order to limit the size of the archive,
an adaptive elimination approach is employed. In the end, when the termination condi-
tion is satisfied, the archive is returned as the result of the search. Further explanations
related to this method are presented below.

4.1 Generating initial empires (Initialization)

Initially to form empires, the countries forming the population should be randomly gen-
erated. Then the countries with better positions are considered as imperialists, while
the rest are called colonies. In order to determine the merit of each individual, the solu-
tions are ranked using the fast non-dominated sorting approach to find the imperialists
summarized as follows:

4.1.1 Fast non-dominated sorting

Many multi-objective evolutionary algorithms, such as NSGA-II and MOPSO, use fast
non-dominated sorting method and crowded distance idea to evaluate individuals. A fast
non-dominated sorting strategy categorizes all the solutions into different non-domination
ranks based on all the objective functions. By measuring the density of solutions, the
crowding distance allows the algorithm to compare two individuals in the same rank and
determine which one is better. Non-dominated solutions at this step are assigned to the
first non-domination rank called the Pareto front. The procedure will be repeated for all
remaining solutions in the population until all solutions become ranked. To do so, the
following two parameters would be calculated for each individual:

• np: domination count, or the number of solutions that dominate the solution p.

• Sp: a set of solutions in which solution p dominates.

All solutions in the first non-dominated front have np = 0 (Pareto front). Then, for each
solution p with np = 0, the value of np for each member of set Sp should be revised,
and its domination count should be reduced by one. In doing so, if for any member
the domination count becomes zero, these members belong to the second non-dominated
front. This procedure continues until all solutions to a front are identified. When all
countries are ranked using the fast non-dominated sorting method, countries with np = 0,
which are imperialists, are stored in the external archive. The rest of the countries are
considered colonies of the imperialists.
Moreover, the Sigma method is used to create initial empires, once the type of country
is determined (imperialist or colonial). This method was introduced for the first time
by Mostaghim [38] for finding the best local guides for each particle of the population
in MOPSO. In MOPSO, selecting the best local guide (leader) for each particle of the
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population from a set of Pareto-optimal solutions is not trivial. The selection of guides
has a significant impact on the convergence and diversity of solutions since it is expected
that leadership will direct the search toward better regions and avoid convergence at a
single point. In the next section, the Sigma method which is used for the establishment
of the initial empires is explained.

4.1.2 Sigma method

In the Sigma method, the best local guide for each particle of the population in the
objective space is selected based on the sigma distance. For each point with coordinates
(f1,i, f(2, i)) in the repository and the swarm, a Sigma vector is calculated. In some
cases, the sigma vector may have negative values without compromising its performance
because the Euclidean distance between the vectors is calculated. For a problem with two
objective functions, the Sigma vector is defined as follows:

σ =
f 2
1 − f 2

2

f 2
1 + f 2

2

(4.1)

In the general case, for problems with more than two objectives, the Sigma is a vector
with

(
m
2

)
elements, where m is the dimension of the objective space. For example, for

three coordinates of f1, f2 and f3, it is defined as below.

σ⃗ =

f 2
1 − f 2

2

f 2
2 − f 2

3

f 2
3 − f 2

1

 /(f 2
1 + f 2

2 + f 2
3 ) (4.2)

In this method, each particle selects the leader candidate among the members of the
archive (repository) whose Sigma vector is closer to its own considering the Euclidean
distance.

4.1.3 Establishment of the initial empires using the Sigma method

Using the basic idea of the Sigma method and by considering the objective space, finding
the best imperialist Impi,g

t among the archive members for colony i of the population is
as below:
In the first step, value σj for imperialist j in the archive is assigned. In the second step,
value σi is calculated for colony i of the population. Then the distance between the σi and
σj, ∀j = 1, . . . , |A| is calculated. Finally, imperialist k in the archive which its σk has the
minimum distance to σi is selected as the imperialist for colony i. Therefore, imperialist
Impi,g

t = Impk is the best imperialist for colony i. Actually, each colony that has a
closer sigma value to the sigma value of the archive member, must select that archive
member as its imperialist. The closer meaning in the case of a two-dimensional objective
space is the difference between the sigma values. While it means in the m-dimensional
objective space, m-Euclidean distance between the sigma values. Figure 4 shows how
initial empires can be formed by finding the imperialists among the archive members for



153 M. Moosapour / JAC 55 issue 1, June 2023, PP. 141 - 183

Figure 4: Generating the initial empires using the Sigma method

each colony in a two-dimensional objective space. Moreover, the algorithm of the Sigma
method, which is used in this paper to form the initial empires, is shown in Algorithm 1.
In this algorithm, the Sigma function calculates the value of σ and the Calcdist calculates
the Euclidean distance between the inputs. There, f(Imp)j defines the cost function value
of jth element of the archive A.

Algorithm 1 The Sigma method for finding the best imperialist Impi,gt for colony i of
the population

Input: A,Col i

Output: Imp i,g
t

Step 1 : Calculate parameter σ for the members of A:

for j = 1 to |A| do
σj = Sigma(f(Imp)j);

end for

Step 2 : Calculate σi for the colony i:
σj = Sigma(f(Col)i);
dist = Calcdist(σ1, σi);
for j = 2 to |A| do

tempdist = Calcdist(σ1, σi);
if tempdist ≤ dist; then

dist= tempdist
g=j

end if
end for
END



154 M. Moosapour / JAC 55 issue 1, June 2023, PP. 141 - 183

Through this method, a colony allocation strategy can avoid the disadvantage that the
original ICA formula cannot be used to calculate empires’ power in multi-objective op-
timization. It is expected that this method can find solutions with good diversity and
convergence.
The algorithm enters the main loop after completing the initial steps and building the
initial empires. The process of the assimilation begins, and colonies start to move towards
their corresponding imperialists like the single objective ICA. When the assimilation is
performed, revolution is another operator of the algorithm that increases the chances of
the colonies escaping the local minimum by making random changes to their position
depending on the revolution rate. In this paper, the revolution probability was chosen
to be 0.1, which means that revolution changes the positions of 10% of the colonies.
In addition, the revolution rate was chosen to be 0.05; this rate determines how many
variables should revolt in one country. After completing the assimilation and revolution
operations, the cost functions of the assimilated and revolted colonies are evaluated. There
is always the possibility that a colony in the moving process reaches a better position than
its imperialist and dominates it. As a result, the colony and imperialism swap positions,
and the colony enters the external archive or repository. Generally, the archive is updated
as follows:

• If the new position colony i, Col(i), dominates the position of its imperialist Imp(i),
clearly Imp(i) will be replaced by Col(i) in the archive.

• In the case that Imp(i) dominates Col(i), Imp(i) will be kept.

4.2 Empire Competition

The change in power between empires during the iterations causes a decrease in the power
of weaker empires and an increase in the power of stronger empires. In this algorithm,
empire competition is modeled by the fact that the most powerful imperialists try to grab
colonies from other imperialists, less powerful ones and expand their territory. Compe-
tition between empires is actually a process of redistribution of each empire’s colonies.
However, the method used in basic ICA cannot be used in multi-objective optimization.
In fact, in multi-objective problems, it is necessary to establish a quantitative measure
to evaluate the solutions and assess the merit of each individual. In imperialist competi-
tion, this measure is crucial for determining the power of countries and the probability of
empire possession. Therefore, the WSum approach is applied in this study to maintain
the diversity of solutions in the competition between empires. In this regard, first, the
rank of each country is determined using fast non-dominated sorting by considering all
objective functions. In addition, between the countries with the highest and lowest rank
(the imperialists in the archive), which are the non-dominant members of the population,
the possession probability of each imperialist can be calculated by the following steps.
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Figure 5: Representation of the WSum method

4.2.1 Weighted Sum (WSum)

The weighted sum approach (WSum), developed by Branke and Mostaghim [42] to select
the personal best leader for each particle, is a weighted sum of the objective values. In this
method, in order to better make diversity, a higher weight is assigned to those criteria in
which the particle is already relatively good. In particular, if fj(xi) is the j-th fitness value
of particle i, the weighted sum for the particle’s personal best is calculated as follows:

F =
∑
j

fj(xi)∑
k fk(xi)

fj(pi) (4.3)

The personal best that obtains the smallest weighted sum is selected to lead particle i.
In this method, the selected leader will be the closest to the opposite axis to particle
i; hence, this method may help maintain a better spread of solutions in the search. Its
general behavior (in nonconvex problems) is illustrated in Figure 5.
In this figure, the blue circular points display the leader or personal best candidates in
the repository, the red circle points represent the particles in the search space, and the
arrows point toward the leader that a particle chooses during its search in a bi-objective
optimization problem. In this technique, the most important thing that can be pointed
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out is that the particles would choose leaders close to the axis but farther from their
current position.

4.2.2 Empire Competition by using WSum method

In the original ICA, the power of each country is determined based on its objective
function, but in the proposed method of this research, the power of each country must
be determined based on all objective functions. In this way, the power of each country
is mainly considered in relation to its rank. Therefore, the weakest country has a higher
rank. After moving the colonies toward their corresponding imperialists, the assimilation
and revolution policies would be implemented, and the archive are updated, the process
of imperialistic competition begins as follows:
First, the rank of each country is determined using fast non-dominated sorting by con-
sidering all objective functions. All countries on the Pareto front which have np = 0 are
stored in the external archive and in fact, are regarded as imperialists. The imperialist
countries selected from this set can have a great influence on the convergence and diversity
of solutions, and this impact would be greater when the optimization problem has a large
number of objective functions. When the rank of all countries is determined, weighted
sum Fc for the colonies with the highest rank and the imperialists c-th in the archive is
calculated by Equation 4.4.

Fc =
∑
j

fj(Coli)∑
k fk(Coli)

fj(Impc) (4.4)

In the imperialistic competition process, the weakest colony is assigned to the empire
whose weighted sum has the lowest value. Whereas, the power is calculated by Equation
4.5.

Powerc =
1

Fc

(4.5)

By calculating the power of all imperialists, the possession probability of each imperialist
is defined by:

Pc =

∣∣∣∣∣ Powerc∑Nimp

i=1 Poweri

∣∣∣∣∣ (4.6)

In order to assign the weakest colonies to an empire, the roulette wheel method is used.
So there is a competition between the empires to add these colonies to their colonies, and
when an imperialist loses all its colonies, it is added as a colony to an empire.

4.3 Archive Updating

In this phase, all countries, including imperialists and colonies, are merged into one group,
and the fast non-dominated sorting method is applied on it. Once the solutions have been
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Figure 6: Removing particles located in another particle’s radius using εelimination approach

ranked, the best non-dominated solutions from these countries, which have a zero rank,
are stored in the external archive. The repository, or external archive, maintains the best
non-dominated solutions obtained so far during the search. If all non-dominated solutions
are kept in the archive, the size of the archive can quickly grow. The archive must be
bounded because it would be updated in each iteration, and this updating may become
computationally expensive. Therefore, it is necessary to use an additional criterion to
decide which non-dominated solutions should be maintained. To limit the number of non-
dominated solutions in the archive, an adaptive elimination approach is employed, which
was first introduced by Mahmoodabadi [24]. Applying this method affects computation
time, convergence, and a variety of solutions. In this technique, each country of the
archive has an elimination radius equal to εelimination, and if the Euclidean distance (in
the objective function space) between two countries is less than εelimination, then one of
them will be eliminated. So,Figure 6 shows this approach for a two-objective space. The
value of the elimination radius is adaptively calculated according to Equation 4.7.

εelimination =
t

ξ ×MaxIt
(4.7)

where ξ is a positive constant, t is the current iteration number, and MaxIt is the
maximum number of allowable iterations.
As can be seen from Equation 4.7, at the initial iterations, more non-dominated solutions
would be kept in the archive (because the elimination radius is small), and this would ac-
celerate the convergence of the algorithm. By increasing the current iteration number, the
elimination radius will be larger, and therefore more similar solutions will be eliminated,
and this would increase the uniform diversity of non-dominant solutions. The minimum
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Euclidean distance between two countries of non-dominated solutions has its maximum
value and is equal to 1/ξ at the final iteration (t = MaxIt).

4.4 Implementation of the Proposed Algorithm

The steps of this proposed method include the initialization of solutions, formation of the
initial empires, assimilation, revolution of colonies, empire competition, and implementa-
tion of an external archive. Among these steps, initialization of solutions, assimilation,
and revolution of colonies are the same as those in the single-objective ICA. Previous sec-
tions described the steps of forming the initial empires, establishing empire competition,
and updating the external archive strategy. Accordingly, in order to employ the proposed
method for multi-objective optimization, the following procedure should be followed:

Step 1: Set the needed parameters for the algorithm: includeing n − Pop (population
size), n− V ar (number of decision variables), V arMin (lower bound of variables),
V arMax (upper bound of variables), MaxIt (maximum number of iterations), β
(assimilation coefficient), pRevolution (revolution probability), µ (revolution rate), and
ζ (positive constant for εelimination).

Step 2: Produce the initial countries, randomly.

Step 3: Calculate the objective functions and Sigma value according to Equations (4.1
or 4.2) for every member of the population of the initial countries.

Step 4: Create initial empires:

1. Assign the most powerful countries using non-dominated sorting and save them
in the archive as the imperialists.

2. Assign other countries to imperialists by using the Sigma method and according
to the colonies allocating rules in Section 4.1.2.

Step 5: Assimilation and revolution:

1. Move the colonies of an empire toward its imperialist (assimilation).

2. Compute the objective functions of assimilated colonies.

3. Perform revolution probability and revolution rate operations on a new colony.

Step 6: If the new colony dominates its own imperialist, then exchange their positions
and refresh the external archive.

Step 7: Perform the empire competition using the WSum method according to Section
4.2.1.

Step 8: Update the external archive according to Section 4.3.
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Step 9: Perform the process until the maximum number of iterations is reached.

After applying a series of improvements to the algorithm, the pseudocode of the introduced
approach is presented as follows.

Algorithm 2 Pseudocode of the proposed algorithm

Input: Set the initial parameters of the proposed Algorithm: n−Pop, n−V ar, V arMin,
V arMax, MaxIt, β, pRevolution, µ and ζ.

Output: Pareto front of proposed algorithm.

Create initial countries randomly
for i = 1 : n− Pop do

Calculate the values of objective functions and Sigma according to Equation (4.1
or 4.2) for each country of the initial populations.

Create empires:
[a] Determine the most powerful countries using non-dominated sorting and reserve

them in the archive as the imperialists.
[b] Assign other countries to imperialists using the Sigma method according to the

colonies allocating rules in Section 4.1.2.
end for
while t ≤ MaxIt do
for i = 1 : nPop do
Assimilation, revolution, and imperialist competition process:
[a] Move the colonies of an empire toward its imperialist (assimilation).
[b] Compute the objective functions of assimilated colonies.
[c] Determine revolution probability and revolution rate on a new colony.
[d] Calculate the value of objective functions for each country, and if a new colony

dominates its own imperialist, then exchange the new colony and imperialist and refresh
the dominant answers in the external archive.

[e] Performing an empire competition using the WSummethod according to Section
4.2.1.

[f] Update the external archive according to Section 4.3.
end for
end while

5 Numerical results and experimental validations

This part of the article consists of four sub-sections: The first is on standard test func-
tions, which represent benchmark problems for bi-objective and tri-objective optimization.
These standard test functions should provide enough difficulty to challenge the algorithm
in searching for the Pareto optimal solutions. The second section is about four perfor-
mance metrics which represent the convergence and diversity of the final solutions. The
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third section includes comparative algorithms and simulation settings. These algorithms,
which include NSGA-II, MOEA/D, SPEA2, PESA-II, GrEA, and KnEA, have provided
acceptable results in solving these types of problems. The related parameter settings for
these algorithms are also given in this section. The last section is simulations and discus-
sions, which compare the results of the proposed algorithm with other algorithms in the
form of graphs and charts. The interpretations of these charts and graphs are also given
in this section.

5.1 Standard test functions

In order to verify the performance of the algorithm proposed in this paper, 12 benchmark
functions are employed. These test functions have various features such as multimodality,
convexity, discontinuity, and non-uniformity, which may limit the ability of the algorithm
to control the convergence and diversity in multi-objective problems. The mathematical
expressions and the admissible ranges of their variables for all benchmarks are summarized
in Tables 1 and 2. In order to achieve reliable results, for all selected benchmark functions,
30 independent runs of each algorithm are performed, and the average of the best results
is shown. In fact, test functions can be divided into two categories:
ZDT test functions. These benchmarks, represented in Table 1, were developed by Zitzler
et al [26] which are the most widely employed suite of benchmarks in standard bi-objective
optimization problems.
DTLZ test functions. These benchmarks, represented in Table 2, were developed by Deb
et al. [40] which are employed suite of benchmarks in standard tri-objective optimization
problems.

5.2 Performance metrics

To assess the performance of a multi-objective optimizer, two basic issues should be con-
sidered. First, the ability to reach the optimal set solutions, and second, the uniform
distribution along the Pareto front. Here, in order to evaluate the convergence and distri-
bution of solutions, four metrics, i.e. generational distance (GD), inverted generational
distance (IGD), spacing (S), and spread (∆) are adopted. The descriptions of these four
indicators is briefly as follows.

• Generational distance (GD): This metric, which was defined by Van Veldhuizen and
Lamont [22], refers to the distance between the non-dominated solution members
obtained by the algorithm and the true Pareto front. It is clear that the algorithms
with the lowest GD have the best convergence to the Pareto optimal front. This
metric is defined as:

GD(PF, PF ∗) =

√∑nnd

i=1(min ∥ PFi, PF ∗
i ∥)2

nnd

(5.1)

where nPF is the number of members in the true Pareto front.



161 M. Moosapour / JAC 55 issue 1, June 2023, PP. 141 - 183

Table 1: The mathematical expressions of the ZDT bi-objective test function suite.

Function name Objective functions
Dimension
(n − V ar)

Bounds
[V arMin,V arMax]

ZDT1

f1(x) = x1

f2(x) = g(x)

(
1 −

√
f1(x)
g(x)

)
g(x) = 1 +

9(
∑n

i=2 xi)

n−1

n=30 xi ∈ [0, 1]

ZDT2

f1(x) = x1

f2(x) = g(x)
(
1 − f1(x)

g(x)

)2

g(x) = 1 +
9(

∑n
i=2 xi)

n−1

n=30 xi ∈ [0, 1]

ZDT3

f1(x) = x1

f2(x) = g(x)

[
1 −

√
f1(x)
g(x)

− f1(x)
g(x)

sin(10πxi)

]
g(x) = 1 +

9(
∑n

i=2 xi)

n−1

n=30 xi ∈ [0, 1]

ZDT4

f1(x) = x1

f2(x) = g(x)

(
1 −

√
f1(x)
g(x)

)
g(x) = 1 + 10(n − 1) +

∑n
i=2

[
x2
i − 10 cos(4πxi)

] n=10
x1 ∈ [0, 1] and
xi ∈ [−5, 5]
i = 2, . . . , n

ZDT5

f1(x) = x1

f2(x) = g(x)
(

1
f1(X)

)
g(x) =

∑n
i=2 ν(u(xi))

ν(u(xi)) =

{
2 + u(xi), if u(xi) < 5

1, if u(xi) = 5

n=11
x1 ∈ [0, 1]30 and

xi ∈ {0, 1}5
i = 2, . . . , n

ZDT6

f1(x) = 1 − exp(−4x1) sin
6(6πx1)

f2(x) = g(x)

[
1 −

(
f1(x)
g(x)

)2
]

g(x) = 1 + 9

(∑n
i=2 xi
n−1

)0.25
n=10 xi ∈ [0, 1]

Table 2: The mathematical expressions of the DTLZ tri-objective test function suite.

Function
name

Objective
functions

Dimension
(n-Var)

Bounds
[VarMin,VarMax]

DTLZ1

f1 = (1/2)x1x2(1 + g)
f2 = (1/2)x1(1 − x2)(1 + g)
f3 = (1/2)(1 − x1)(1 + g)

g = 100[10 +
∑n

i=3((xi − 0.5)2 − cos(20π(xi − 0.5)))]

12 [0, 1]

DTLZ2

f1 = (1 + g) cos(x1(π/2)) cos(x2(π/2))
f2 = (1 + g) cos(x1(π/2)) sin(x2(π/2))

f3 = (1 + g) sin(x1(π/2))

g =
∑n

i=3(xi − 0.5)2

12 [0, 1]

DTLZ3

f1 = (1 + g) cos(x1(π/2)) cos(x2(π/2))
f2 = (1 + g) cos(x1(π/2)) sin(x2(π/2))

f3 = (1 + g) sin(x1(π/2))

g = 100[10 +
∑n

i=3((xi − 0.5)2 − cos(20π(xi − 0.5)))]

12 [0, 1]

DTLZ4

f1 = (1 + g) cos(xα
1 (π/2)) cos(xα

2 (π/2))
f2 = (1 + g) cos(xα

1 (π/2)) sin(xα
2 (π/2))

f3 = (1 + g) sin(xα
1 (π/2))

g =
∑n

i=3(xi − 0.5)2, where α = 100

12 [0, 1]

DTLZ6

f1 = (1 + g) cos((π/2)θ1) cos((π/2)θ2)
f2 = (1 + g) cos((π/2)θ1) sin((π/2)θ2)

f3 = (1 + g) sin((π/2)θ1)
θ1 = π

2
x1 , θ2 = (π/4(1 + g))(1 + 2gx2)

g =
∑

xi
(xi)

0.1

12 [0, 1]

DTLZ7

f1 = x1
f2 = x2

f3 = (1 + g)(3 −
∑2

i=1

(
fi

1+g
(1 + sin(3πfi))

)
g = 1 + 9

22

∑n
i=3 xi

22 [0, 1]
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• Spacing (S): This metric, which was defined by [16], refers to the spread of the
non-dominated solutions and indicates the uniform distribution of them along the
obtained Pareto front. This metric can be calculated by:

S(PF, PF ∗) =

√√√√ 1

nnd − 1

nnd∑
i=1

(di − d̄i)2 (5.2)

where di = minj(|f i
1(x)−f j

1 (x)|+|f i
2(x)−f j

2 (x)|), i, j = 1, . . . , nnd, and d̄ is the mean
of all di. It should be noted that S = 0 illustrates the best uniform distribution
in the obtained set of non-dominated solutions and indicates that all members are
evenly spaced apart.

• Spread (∆): This metric shows the distribution of the solutions and the diversity
in the non-dominated solutions obtained through the optimization processes. This
metric, which was defined by Deb [35], is expressed as follows:

∆(PF, PF ∗) =
df + dt +

∑nnd

i=1 |di − d̄|
df + dt + (nnd − 1)d̄

(5.3)

The parameters df and dl are the Euclidean distance between the extreme solutions
in the true Pareto front and the boundary solutions in the obtained non-dominated
front. di is the Euclidean distance between consecutive solutions in the obtained set
of the non-dominated front, and d̄ is the mean of these distances. In general, the
value of ∆ is always greater than zero, and if it is equal to zero, excellent conditions
occur. Its lower value means the better distribution and expansion of solutions, and
its zero value indicates that extreme solutions of the true Pareto front have been
found, and for all non-dominated points (di = d̄).

5.3 Comparative algorithms and simulating settings

In this study, to investigate the efficiency and effectiveness of the proposed algorithm, the
results would be compared with six popular multi-objective algorithms, including NSGA-
II, MOEA/D, SPEA2, PESA-II, GrEA, and KnEA. This comparison is based on the 4
performance metrics and 12 benchmark functions described in the previous sub-sections.
The proposed algorithm is coded in the programming section of MATLAB R2018a 64-
bit (Win64) software and simulation are performed in Windows 10, Intel®Core(TM)
i7-7700HQ CPU 2.80GHz with a 16.00 GB RAM memory. In order to achieve reliable
results, all the benchmark functions are tested with 30 independent runs. The mean
and standard deviation values of the performance metrics corresponding to each test
function are shown in Tables 3 ∼ 6. In all these multi-objective comparative algorithms,
the related parameter settings are the same as in their corresponding references [32,
33, Khanali[23, 25, 27, 18]. The initial population size of the proposed algorithm is
set to 200. The maximum number of iterations (MaxIt) for bi-objective benchmark
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Table 3: Result of generational distance (GD) on the ZDT bi-objective and DTLZ tri-objective test function suites.

Benchmark
Functions

NSGA-II MOEA/D SPEA2 PESA-II GrEA KnEA
Proposed
Algorithm

ZDT1
Mean 1.466E-4 2.569E-4 1.898E-4 3.631E-4 4.684E-4 1.594E-4 1.301E-4
SD 3.532E-5 6.461E-5 4.702E-5 9.413E-4 1.772E-3 5.091E-4 1.601E-5

ZDT2
Mean 1.295E-4 3.782E-4 1.457E-4 4.704E-4 1.232E-4 6.587E-5 3.735E-4
SD 4.301E-5 2.962E-4 4.561E-5 5.232E-3 3.981E-5 3.652E-5 2.051E-4

ZDT3
Mean 8.606E-5 1.062E-3 1.817E-4 1.742E-3 1.409E-4 1.195E-4 1.086E-4
SD 2.571E-5 1.682E-3 5.933E-4 6.992E-3 2.071E-4 2.692E-4 2.522e-5

ZDT4
Mean 2.391E-4 1.574E-3 2.796E-4 1.308E-3 3.238E-2 9.596E-3 1.197E-4
SD 1.292E-4 1.421E-3 1.293E-4 7.182E-3 5.103E-2 2.341E-2 1.251E-4

ZDT5
Mean 3.533E-2 1.321E-1 5.068E-2 1.976E-2 7.035E-2 2.727E-2 1.578E-2
SD 1.351E-2 6.932E-3 2.061E-2 2.672E-2 2.561E-2 1.550E-2 1.462E-2

ZDT6
Mean 1.318E-4 5.536E-4 1.933E-4 8.096E-4 1.316E-3 7.919E-4 1.152E-4
SD 9.692E-5 1.591E-4 1.453E-4 1.354E-4 4.531E-3 6.812E-4 1.235E-4

DTLZ1
Mean 9.162E-4 3.993E-4 2.878E-3 8.028E-2 1.569E-1 5.438E-2 2.979E-4
SD 3.342E-3 1.663E-4 1.513E-2 1.903E-1 2.922E-1 1.184E-1 1.125e-4

DTLZ2
Mean 7.606E-4 3.689E-4 6.434E-4 8.063E-4 3.389E-4 3.674E-4 2.538E-4
SD 7.154E-5 4.873E-6 4.851E-5 8.312E-5 2.014E-5 3.075E-5 3.851E-6

DTLZ3
Mean 1.370E-1 1.060E-1 1.454E-1 1.221E-1 1.750E-1 4.777E-2 1.030E-1
SD 2.463E-1 1.542E-1 2.164E-1 2.644E-1 2.092E-1 5.963E-2 1.331E-1

DTLZ4
Mean 7.385E-4 2.983E-4 6.931E-4 8.196E-4 3.439E-4 3.512E-4 2.424E-4
SD 6.004E-5 1.014E-4 1.692E-4 7.423E-5 5.953E-5 1.972E-5 2.351E-5

DTLZ6
Mean 3.437E-6 5.244E-4 3.376E-6 3.891E-6 3.273E-6 3.129E-6 2.122E-6
SD 1.183E-7 7.234E-3 1.192E-7 1.231E-7 3.063E-7 2.064E-7 1.023E-7

DTLZ7
Mean 1.726E-3 2.419E-3 1.343E-3 1.712E-3 4.948E-4 8.937E-4 1.041E-3
SD 1.991E-4 5.634E-4 1.253E-4 3.282E-4 8.031E-5 1.193E-4 2.034E-4

functions is 100, and the maximum number of evaluations is 10000, whereas, for tri-
objective benchmark functions, these values are 300 and 50000, respectively. Furthermore,
assimilation coefficient β = 2, revolution probability pRevolution = 0.1, revolution rate
µ = 0.05, and the positive constant for εelimination of ξ = 100 . When calculating a
benchmark function, to have a fair comparison with the results of different algorithms,
the initial population size, the maximum number of iterations and the maximum number
of evaluations of all comparison algorithms are same as those of the proposed algorithm.

5.4 Experimental Results and Discussion

As mentioned in previous sections, the proposed algorithm in this paper uses the Sigma
method in empire formation to improve the convergence, and the WSum method in the
competition between empires to increase the diversity of solutions. Therefore, it is ex-
pected to be computationally more efficient or comparable to the most efficient algorithms.
In order to assess the effectiveness of the new algorithm, four performance metrics of GD,
IGD, S, and ∆ are used. The results are compared with six multi-objective algorithms:
NSGA− II, MOEA/D, SPEA2, PESA− II, GrEA, and KnEA. Tables 3, 4, 5, and
6 show the mean and standard deviation of the GD, IGD, S, and ∆ values averaged over
30 independent runs for the seven compared MOEAs, with the best mean highlighted
among the compared algorithms. Moreover, in order to illustrate the convergence and
distribution of the solutions on the obtained Pareto fronts by the proposed algorithm, the
resultant Pareto front generated by three algorithms in solving the twelve test functions
in the best run are shown in Figures 7 ∼ 18. To summarize, as can be seen from tables
and figures, non-dominated solutions found by the proposed algorithm are very near the
true Pareto front, and they are superior in the majority of the standard bi-objective and
tri-objective test functions.
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Table 4: Result of inverted generational distance (IGD) on the ZDT bi-objective and DTLZ tri-objective test function suites.

Benchmark
Functions

NSGA-II MOEA/D SPEA2 PESA-II GrEA KnEA
Proposed
Algorithm

ZDT1
Mean 4.793E-3 1.824E-2 3.509E-3 2.304E-2 5.255E-3 3.416E-2 1.978E-3
SD 7.421E-3 2.154E-2 6.391E-4 2.633E-2 4.331E-4 3.963E-2 2.042E-3

ZDT2
Mean 1.565E-2 4.487E-2 1.257E-2 9.932E-1 1.444E-2 2.434E-2 1.636E-2
SD 2.463E-2 8.523E-2 1.752E-2 1.122E-2 1.832E-2 2.374E-2 1.073E-2

ZDT3
Mean 4.074E-2 2.492E-2 1.629E-2 1.371E-1 2.184E-2 2.772E-2 1.081E-2
SD 6.284E-2 2.263E-2 2.544E-2 9.154E-2 3.204E-2 4.013E-2 1.872E-2

ZDT4
Mean 6.212E-3 2.862E-2 4.597E-3 8.627E-3 3.007E-2 4.742E-2 1.736E-2
SD 1.232E-2 2.312E-2 1.573E-3 2.273E-3 3.632E-2 5.462E-2 1.144E-2

ZDT5
Mean 4.229E-1 7.859E+0 3.660E-1 5.180E-1 2.074E+0 5.850E+0 3.076E-1
SD 1.123E-1 2.056E-1 1.213E-1 2.782E-1 2.584E-1 1.553E+0 1.485E-1

ZDT6
Mean 2.566E-3 6.488E-3 3.091E-3 4.329E-3 4.450E-3 3.244E-3 5.275E-3
SD 6.561E-4 1.767E-3 1.342E-3 6.114E-4 5.861E-4 6.046E-4 6.863E-3

DTLZ1
Mean 2.283E-2 1.503E-2 1.514E-2 1.938E-2 5.623E-2 3.188E-2 2.167E-2
SD 1.693E-2 9.564E-4 9.693E-4 1.343E-3 4.462E-2 2.463E-2 1.294E-2

DTLZ2
Mean 4.891E-2 3.649E-2 3.792E-2 4.520E-2 5.448E-2 4.415E-2 3.376E-2
SD 1.684E-3 7.293E-5 3.164E-4 8.802E-4 7.391E-4 1.182E-3 1.034E-3

DTLZ3
Mean 6.959E-1 5.894E-1 6.404E-1 4.004E-1 1.112E+0 4.143E-1 4.043E-1
SD 7.661E-1 1.452E+0 7.332E-1 6.292E-1 1.052E+0 4.873E-1 5.175E-1

DTLZ4
Mean 4.789E-2 3.242E-1 8.004E-2 4.572E-2 8.771E-2 4.394E-2 2.483E-2
SD 1.162E-3 2.974E-1 1.404E-1 8.061E-4 1.243E-1 1.414E-3 1.182E-2

DTLZ6
Mean 2.897E-3 2.241E-2 2.042E-3 7.550E-3 2.209E-2 2.668E-3 6.929E-3
SD 1.074E-4 3.293E-4 1.083E-5 1.114E-3 2.714E-4 4.386E-4 7.483E-4

DTLZ7
Mean 5.374E-2 1.729E-1 4.168E-2 8.965E-2 6.773E-2 4.508E-2 3.022E-2
SD 2.753E-3 2.104E-1 9.402E-4 1.252E-1 4.182E-3 1.823E-3 1.242E-3

Table 5: Result of spacing (S) on the ZDT bi-objective and DTLZ tri-objective test function suites.

Benchmark
Functions

NSGA-II MOEA/D SPEA2 PESA-II GrEA KnEA
Proposed
Algorithm

ZDT1
Mean 3.393E-3 3.918E-3 1.845E-3 8.430E-3 9.290E-3 6.733E-3 1.633E-3
SD 4.013E-4 9.741E-4 1.782E-4 1.281E-2 2.552E-2 6.614E-3 1.153E-3

ZDT2
Mean 4.153E-3 4.397E-3 3.783E-3 8.104E-3 3.830E-3 6.567E-3 3.162E-3
SD 2.752E-3 1.874E-3 2.513E-3 1.713E-2 9.954E-4 3.205E-3 2.724E-3

ZDT3
Mean 4.447E-3 1.213E-2 2.157E-3 5.651E-2 7.533E-3 7.078E-3 4.322E-3
SD 6.174E-3 2.742E-3 4.165E-4 9.683E-3 2.723E-3 5.334E-3 8.843E-4

ZDT4
Mean 3.318E-3 5.326E-3 1.950E-3 1.948E-2 4.024E-1 1.335E-1 1.240E-3
SD 3.302E-4 1.243E-3 2.692E-4 1.024E-1 6.573E-1 3.261E-1 2.032E-4

ZDT5
Mean 5.982E-3 5.980E-1 2.393E-3 6.758E-2 1.088E-1 2.272E-1 4.818E-2
SD 2.004E-2 2.632E-2 1.316E-2 4.542E-2 3.832E-2 9.174E-2 1.861E-2

ZDT6
Mean 2.801E-3 2.648E-3 1.730E-3 6.854E-2 1.973E-2 5.537E-3 3.928E-4
SD 8.023E-4 7.304E-4 1.213E-3 1.153E-1 6.361E-2 4.913E-4 1.264E-4

DTLZ1
Mean 1.626E-2 3.790E-3 3.766E-2 1.101E+0 2.144E+0 7.399E-1 1.597E-3
SD 4.253E-3 1.362E-3 1.912E-1 2.614E+0 4.083E+0 1.663E+0 2.425E-3

DTLZ2
Mean 3.996E-2 3.772E-2 1.637E-2 3.923E-2 4.365E-2 5.023E-2 5.820E-3
SD 2.451E-3 2.874E-4 9.024E-4 2.604E-3 1.982E-3 2.205E-3 2.303E-3

DTLZ3
Mean 9.319E-1 1.321E-1 1.244E+0 1.131E+0 4.657E-1 8.845E-2 4.315E-1
SD 3.415E+0 1.282E-1 3.114E+0 3.592E+0 1.514E+0 5.226E-2 5.831E-1

DTLZ4
Mean 3.985E-2 2.069E-2 1.505E-2 4.027E-2 4.091E-2 5.108E-2 5.016E-3
SD 1.964E-3 1.641E-2 4.304E-3 2.083E-3 1.062E-2 2.342e-3 2.852E-4

DTLZ6
Mean 5.554E-3 5.459E-2 2.302E-3 3.207E-3 7.926E-3 5.753E-3 2.466E-3
SD 3.214E-4 7.053E-3 1.353E-4 2.662E-4 9.415E-5 9.414E-4 1.934E-3

DTLZ7
Mean 4.656E-2 1.231E-1 2.006E-2 4.273E-2 3.918E-2 4.864E-2 1.134E-2
SD 4.542E-3 3.162E-2 1.491E-3 6.284E-3 6.003E-3 3.183E-3 2.652E-3



165 M. Moosapour / JAC 55 issue 1, June 2023, PP. 141 - 183

Figure 7: Pareto frontiers of the ZDT1 benchmark function produced by PESA − II,
MOEA/D, and the Proposed Algorithm



166 M. Moosapour / JAC 55 issue 1, June 2023, PP. 141 - 183

Figure 8: Pareto frontiers of the ZDT2 benchmark function produced by PESA − II,
MOEA/D, and the Proposed Algorithm.
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Figure 9: Pareto frontiers of the ZDT3 benchmark function produced by PESA − II,
MOEA/D, and the Proposed Algorithm
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Figure 10: Pareto frontiers of the ZDT4 benchmark function produced by PESA − II,
MOEA/D, and the Proposed Algorithm.
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Figure 11: Pareto frontiers of the ZDT5 benchmark function produced by PESA − II,
MOEA/D, and the Proposed Algorithm.
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Figure 12: Pareto frontiers of the ZDT6 benchmark function produced by PESA − II,
MOEA/D, and the Proposed Algorithm
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Figure 13: Pareto frontiers of the DTLZ1 benchmark function produced by PESA− II,
MOEA/D, and the Proposed Algorithm
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Figure 14: Pareto frontiers of the DTLZ2 benchmark function produced by PESA− II,
MOEA/D, and the Proposed Algorithm
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Figure 15: Pareto frontiers of the DTLZ3 benchmark function produced by PESA− II,
MOEA/D, and the Proposed Algorithm
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Figure 16: Pareto frontiers of the DTLZ4 benchmark function produced by PESA− II,
MOEA/D, and the Proposed Algorithm
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Figure 17: Pareto frontiers of the DTLZ6 benchmark function produced by PESA− II,
MOEA/D, and the Proposed Algorithm
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Figure 18: Pareto frontiers of the DTLZ7 benchmark function produced by PESA− II,
MOEA/D, and the Proposed Algorithm
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Table 6: Result of spread (∆) on the ZDT bi-objective and DTLZ tri-objective test function suites

Benchmark
Functions

NSGA-II MOEA/D SPEA2 PESA-II GrEA KnEA
Proposed
Algorithm

ZDT1
Mean 3.822E-1 6.464E-1 1.673E-1 8.831E-1 8.671E-1 7.643E-1 1.280E-1
SD 5.084E-2 2.622E-1 1.883E-2 1.051E-1 1.514E-1 4.872E-2 1.733E-2

ZDT2
Mean 4.597E-1 6.787E-1 2.912E-1 8.436E-1 8.169E-1 8.221E-1 2.301E-1
SD 1.181E-1 3.802E-1 1.343E-1 1.023E-1 8.754E-2 6.562E-2 1.631E-1

ZDT3
Mean 5.104E-1 7.609E-1 2.579E-1 9.416E-1 1.012E+0 8.163E-1 4.289E-1
SD 1.423E-1 1.374E-1 9.971E-2 5.654E-2 8.242E-2 5.781E-2 1.093E-1

ZDT4
Mean 3.784E-1 9.042E-1 1.767E-1 8.813E-1 1.222E+0 9.843E-1 1.176E-1
SD 4.991E-2 2.524E-1 2.903E-2 1.461E-1 4.992E-1 3.843E-1 2.192E-2

ZDT5
Mean 1.017E+0 1.002E+0 1.008E+0 1.148E+0 1.141E+0 1.201E+0 1.246E+0
SD 5.823E-2 9.424E-3 4.262E-2 1.185E-1 5.082E-2 5.923E-2 2.254E-1

ZDT6
Mean 3.498E-1 2.459E-1 1.759E-1 1.073E+0 8.626E-1 7.469E-1 1.069E-1
SD 4.331E-2 7.003E-2 3.474E-2 4.093E-1 3.143E-1 6.192E-2 3.114E-2

DTLZ1
Mean 5.003E-1 5.848E-2 1.332E-1 9.142E-1 1.307E+0 8.671E-1 1.172E-2
SD 7.234E-2 2.234E-2 2.292E-1 5.261E-1 5.074E-1 5.253E-1 1.704E-2

DTLZ2
Mean 5.001E-1 1.721E-1 9.044E-2 4.548E-1 1.110E+0 4.234E-1 1.215E-1
SD 3.863E-2 1.434E-3 8.291E-3 4.184E-2 6.453E-2 4.702E-2 2.083E-2

DTLZ3
Mean 7.986E-1 7.604E-1 7.760E-1 8.316E-1 8.248E-1 7.849E-1 6.594E-1
SD 3.363E-1 4.214E-1 4.991E-1 3.992E-1 2.414E-1 1.023E-1 1.401E-1

DTLZ4
Mean 4.947E-1 6.013E-1 1.291E-1 7.628E-1 1.089E+0 4.304E-1 1.271E-1
SD 3.182E-2 4.174E-1 1.343E-1 3.601E-2 6.733E-2 5.152E-2 1.314E-1

DTLZ6
Mean 6.653E-1 1.927E+0 1.304E-1 1.203E-1 1.987E+0 4.162E-1 1.103E-1
SD 5.693E-2 1.774E-1 9.162E-3 1.014E-1 2.671E-2 7.482E-2 1.073E-2

DTLZ7
Mean 4.874E-1 1.060E+0 1.167E-1 5.607E-1 1.018E+0 4.583E-1 5.488E-1
SD 3.213E-2 8.342E-2 8.224E-3 4.263E-2 6.531E-2 3.634E-2 3.982E-2

The mean and standard deviation of the GD values on the ZDT and DTLZ test function
suites for the seven compared MOEAs are presented in Table 3. In terms of this metric,
as can be clearly observed from this Table, the proposed algorithm with the lowest GD
outperforms in the majority of the ZDT bi-objective test functions. For example, among
the six ZDT test problems, the proposed algorithm achieved the smallest GD values
on four bi-objective test problems (ZDT1, ZDT4, ZDT5, and ZDT6). However, the
GrEA and NSGA− II algorithms demonstrated better results than other algorithms for
ZDT2 and ZDT3, respectively. In addition, for the DTLZ tri-objective test functions,
the proposed algorithm represents the best results for DTLZ1, DTLZ2, DTLZ4, and
DTLZ6. Moreover, it gives satisfactory results even in cases where this algorithm does not
perform the best. For example, it is ranked second after theKnEA algorithm forDTLZ3,
and third after the GrEA and KnEA algorithms for DTLZ7. Based on the above-
discussed results about the convergence to the true Pareto front set (GD metric), it can
be concluded that the proposed algorithm performs better than the six other algorithms
in the majority of the test functions.
As done for the GD metric, the results of the IGD found by the considered algorithms
are summarized in Table 4. The IGD value represents the performance of the algorithm
in terms of both convergence and diversity of the obtained non-dominated solutions. As
can be seen from Table 4, the proposed algorithm performs more effectively than 7 out
of 12 test functions. For the IGD metric, while it outperforms the other algorithms for
optimizing the ZDT1, ZDT3, ZDT4, and ZDT5 test functions, the SPEA2 algorithm
presents better results for the ZDT2 and ZDT6. As seen in Table 4, for the DTLZ test
problems, the proposed algorithm achieved the smallest IGD values on three tri-objective
test problems (DTLZ2, DTLZ4, and DTLZ7). While the MOEA/D, PESA− II, and
SPEA2 algorithms achieved better results for DTLZ1, DTLZ3, and DTLZ4, respec-
tively. The obtained results indicate that the proposed algorithm, despite not being able
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to outperform all other algorithms in all of the test functions, has acceptable performance
in terms of the IGD metric.
Table 5 reports the obtained results for the S metric. The proposed algorithm achieved
the best results in terms of this metric in four ZDT test functions. As can be seen
from Table 5, the proposed algorithm outperforms the other algorithms in optimizing the
ZDT1, ZDT2, ZDT4, and ZDT6 test functions, whereas the SPEA2 algorithm has
the best result for the ZDT3 and ZDT5 test functions. In addition, in terms of the S
performance metric, the proposed algorithm is the superior model for four tri-objective
test functions (DTLZ1, DTLZ2, DTLZ4, and DTLZ7). While the KnEA and SPEA2
algorithms achieve the best results forDTLZ3 andDTLZ6, respectively. Compared to all
these algorithms, the obtained results for the S metric show that the proposed algorithm
is able to evolve a diverse solution set, resulting in the lowest value of the S metric for
most of the test functions.
The obtained results for the ∆ metric, which evaluates the algorithm in terms of diversity
and spread, are demonstrated in Table 6. In an overall analysis of this table, it can be
seen that the proposed algorithm is superior for the ZDT1, ZDT2, ZDT4, and ZDT6
functions. While the SPEA2 and MOEA/D algorithms produce the best results for
ZDT3 and ZDT5, respectively. Furthermore, with the exception of the DTLZ7 function,
the proposed algorithm outperforms the other algorithms in terms of the ∆ metric. In
the case of the DTLZ7 function, the SPEA2 algorithm achieved the best results. This
analysis indicates that the proposed algorithm provides the sufficient variety for the Pareto
optimal sets.
In an overview of the analysis of the results in Tables 3, 4, 5, and 6, it can be confirmed
that the proposed algorithm is better than the six other studied algorithms, especially
in GD and ∆ metrics. In order to show this superiority, graphical comparisons between
the true Pareto fronts and the approximate Pareto fronts obtained by the proposed,
PESA− II and MOEA/D algorithms in solving each test function are shown in Figures
7 ∼ 18. Figures 7 and 8 visually display that for the ZDT1 and ZDT2 test functions, the
proposed algorithm is able to generate solutions that are close to the true Pareto front
and well spread along it. The MOEA/D algorithm presents good results close to the
true Pareto front, but this algorithm has a poor distribution at the right and left ends
of the curve. However, the PESA − II algorithm could not cover the optimal Pareto
front well and provide a uniform distribution. For the ZDT3 test function, the proposed
algorithm discovers accurate results, but the MOEA/D and PESA− II algorithms are
unable to produce a set of solutions that have good convergence and diversity. For the
ZDT4 test function, the proposed algorithm is much more successful than the MOEA/D
and PESA − II, while the MOEA/D and PESA − II algorithms are similar in that
they generate solutions close to the true Pareto front. Nevertheless, it is clear that the
PESA− II has a poor distribution. In the ZDT5 test function, the general behavior of
the proposed algorithm is similar to that of the PESA − II; however, the performance
of the MOEA/D algorithm is not acceptable. The results for the ZDT6 test function
show that all algorithms produce solutions close to the true Pareto front and well dis-
tributed along it, while the proposed algorithm presents slightly better solutions. Similar
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results are obtained for the tri-objective test functions, i.e. DTLZ1, DTLZ2, DTLZ3,
and DTLZ4. As seen in Figures 13 ∼ 16, the proposed algorithm presents quite good
results and MOEA/D is much more successful than the PESA− II algorithm. For the
DTLZ6 test function, the proposed algorithm is able to achieve better results than the
other algorithms, considering both convergence and diversity, while MOEA/D produces
the worst results in general. In the optimization of the DTLZ7 test function, the pro-
posed algorithm has resulted in the best convergence and diversity compared to the other
algorithms.

6 Conclusion

Many real-world problems have more than one objective function to be optimized simul-
taneously. In the present paper, an improved imperialistic competitive algorithm to solve
multi-objective optimization problems has been presented, through modifying the con-
vergence and diversity of solutions. In order to increase the diversity of solutions, the
proposed method has applied the Sigma method in empire formation and the WSum
method in the competition between empires. To evaluate the performance of the pro-
posed algorithm, 12 benchmark functions, including six bi-objective ZDT functions and
six tri-objective DTLZ functions, have been analyzed by considering four performance
metrics. In comparison with six multi-objective algorithms: NSGA − II, MOEA/D,
SPEA2, PESA− II, GrEA, and KnEA, results have demonstrated that the proposed
algorithm significantly outperforms the MOEA/D and PESA− II algorithms. Because
the Pareto front produced by the proposed algorithm was more regular in most cases
and lead to better convergence than the MOAE/D and PESA − II algorithms. The
results have also shown that this algorithm is comparable to or is even better than other
algorithms like the NSGA− II, SPEA2, GrEA, and KnEA. Moreover, it has achieved
the desirable solutions in most of the benchmark functions. The results have indicated
that, in general, the approach is superior to other algorithms not only in approximating
the Pareto optimal front but also in terms of diversity and distribution of solutions in
most of the test problems.
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