

Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

4-Total Mean Cordial Labeling of Some Trees

R. Ponraj^{*1} and S. Subbulakshmi^{$\dagger 2$}

¹Department of Mathematics, Sri Paramakalyani College, Alwarkurichi–627 412, Tamil Nadu, India.

²Research Scholor, Reg.No:20124012092023, Department of Mathematics, Manonmaniam Sundaranar University, Abhishekapati, Tirunelveli–627 012, India.

ABSTRACT

Let G be a graph. Let $f: V(G) \to \{0, 1, 2, \ldots, k-1\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label $f(uv) = \left\lceil \frac{f(u)+f(v)}{2} \right\rceil$. f is called a k-total mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \leq 1$, for all $i, j \in \{0, 1, 2, \ldots, k-1\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labelled with $x, x \in \{0, 1, 2, \ldots, k-1\}$. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph. In this paper we examine the 4-Total mean cordial labeling of some trees. ARTICLE INFO

Article history: Research paper Received 12, June 2023 Accepted 18, August 2023 Available online 03, July 2024

Keyword: path, star, lily, banana tree.

AMS subject Classification: 68W40.

1 Introduction

In this paper, we consider simple, finite and undirected graphs only. Graph labeling is applied in several area of sciences like coding theory, x-ray crystallography, radar, astronomy, circuit design, communication network addressing, data base management, secret sharing schmes, cryptology, models for constraint programming over finite domains, etc [2]. Cordial labeling was introduced by Cahit [1]. Motivated by this labeling method the notion of

^{*}Corresponding author: R. Ponraj. Email: ponrajmaths@gmail.com

 $^{^{\}dagger}ssubbulakshm is @gmail.com$

k-total mean cordial labeling has been introduced in [5]. Also in [5, 6, 7, 8, 9, 10, 11, 12, 13] the 4-total mean cordial labeling behaviour of several graphs like cycle, complete graph, star, bistar, comb and crown have been investigated. In this paper we examine the 4-total mean cordial labeling of some trees. Let x be any real number. Then $\lceil x \rceil$ stands for the smallest integer greater than or equal to x. Terms are not defined here follow from Harary[3] and Gallian[2].

2 k-total mean cordial graph

Definition 2.1. Let G be a graph. Let $f: V(G) \to \{0, 1, 2, ..., k-1\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label $f(uv) = \left\lceil \frac{f(u)+f(v)}{2} \right\rceil$. fis called a k-total mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \leq 1$, for all $i, j \in \{0, 1, 2, ..., k-1\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labelled with $x, x \in \{0, 1, 2, ..., k-1\}$. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph.

3 Preliminaries

Definition 3.1. [4] The Lilly graph I_n , $n \ge 2$ is constructed by two copy of the stars $2K_{1,n}$, $n \ge 2$ joining the two copy of the path graphs $2P_n$, $n \ge 2$ with sharing a common vertex. Let $V(I_n) = \{x_i, y_i : 1 \le i \le n\} \cup \{u_i : 1 \le i \le n\} \cup \{v_i : 1 \le i \le n-1\}$ and $E(I_n) = \{u_n x_i, u_n y_i : 1 \le i \le n\} \cup \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{v_i v_{i+1} : 1 \le i \le n-2\} \cup \{u_n v_1\}$. Clearly $|V(I_n)| + |E(I_n)| = 8n - 3$.

Definition 3.2. [3] Let G_1 , G_2 respectively be (p_1, q_1) , (p_2, q_2) graphs. The corona of G_1 with G_2 is the graph $G_1 \odot G_2$ obtained by taking one copy of G_1 , p_1 copies of G_2 and joining the i^{th} vertex of G_1 by an edge to every vertex in the i^{th} copy of G_2 where $1 \le i \le p_1$.

Definition 3.3. [4] The banana tree B(m, n) is a graph obtained by connecting one leaf of each of *m*-copies of the star $K_{1,n}$ with a single root vertex that is distinct from all the stars.

Definition 3.4. [4] The coconut tree CT(m, n) is a graph obtained from the path P_n by appending m new pendent edges at an end vertex of P_n .

Definition 3.5. [3] The graph $G^{(n)}$, $n \ge 2$ is constructed by path and stars. Let the vertex and edge set of $G^{(n)}$ denote by $V(G^{(n)}) = \{u_i, v_i, w_i, w_{i,j} : 1 \le i \le n, 1 \le j \le n-1\}$ and $E(G^{(n)}) = \{u_i v_i, v_i w_i, w_i w_{i,j} : 1 \le i \le n, 1 \le j \le n-1\} \cup \{u_i u_{i+1} : 1 \le i \le n-1\}$ respectively.

4 Main results

Theorem 4.1. The Lilly graph I_n is a 4-total mean cordial for all values of $n \ge 2$.

Proof Take the vertex set and the edge set of I_n as in Definition 3.1. Clearly $|V(I_n)| + |E(I_n)| = 8n - 3$.

Assign the label 0 to the *n* vertices x_1, x_2, \ldots, x_n . Now we assign the label 1 to the n-1 vertices $y_1, y_2, \ldots, y_{n-1}$. Now we assign the label 2 to the vertex u_1 . Next we assign the label 3 to the n-1 vertices u_2, u_3, \ldots, u_n . Finally we assign the label 3 to the *n* vertices v_1, v_2, \ldots, v_n . Obviously $t_{mf}(0) = t_{mf}(1) = t_{mf}(3) = 2n-1$; $t_{mf}(2) = 2n$.

Theorem 4.2. The graph $(P_n \odot K_1) \odot K_{1,n}$ is 4-total mean cordial for all values of $n \ge 2$.

Proof Let us now denote by $V((P_n \odot K_1) \odot K_{1,n}) = \{u_i, v_i, v_{i,j} : 1 \le i \le n, 1 \le i \le n\}$ and $E((P_n \odot K_1) \odot K_{1,n}) = \{u_i v_i, v_i v_{i,j} : 1 \le i \le n, 1 \le j \le n\} \cup \{u_i u_{i+1} : 1 \le i \le n-1\}$ the vertex and the edge sets of $(P_n \odot K_1) \odot K_{1,n}$ respectively. Note that

$$|V((P_n \odot K_1) \odot K_{1,n})| + |E((P_n \odot K_1) \odot K_{1,n})| = 2n^2 + 4n - 1.$$

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \in \mathbb{N}$. Assign the label 0 to the *r* vertices u_1, u_2, \ldots, u_r . Now we assign the label 1 to the *r* vertices $u_{r+1}, u_{r+2}, \ldots, u_{2r}$. Next we assign the label 2 to the *r* vertices $u_{2r+1}, u_{2r+2}, \ldots, u_{3r}$. We now assign the label 3 to the *r* vertices $u_{3r+1}, u_{3r+2}, \ldots, u_{4r}$.

Assign the label 0 to the r vertices v_1, v_2, \ldots, v_r . Next we assign the label 1 to the r vertices $v_{r+1}, v_{r+2}, \ldots, v_{2r}$. Now we assign the label 2 to the r vertices $v_{2r+1}, v_{2r+2}, \ldots, v_{3r}$. Then we assign the label 3 to the r vertices $v_{3r+1}, v_{3r+2}, \ldots, v_{4r}$.

Assign the label 0 to the *r* copies of 4*r* vertices $v_{1,1}, v_{1,2}, \ldots, v_{1,4r}, v_{2,1}, v_{2,2}, \ldots, v_{2,4r}, \ldots, v_{r,1}, v_{r,2}, \ldots, v_{r,4r}$. We now assign the label 1 to the *r* copies of 4*r* vertices $v_{r+1,1}, v_{r+1,2}, \ldots, v_{r+1,4r}, v_{r+2,1}, v_{r+2,2}, \ldots, v_{r+2,4r}, \ldots, v_{2r,1}, v_{2r,2}, \ldots, v_{2r,4r}$. Now we assign the label 2 to the *r* copies of 4*r* vertices $v_{2r+1,1}, v_{2r+1,2}, \ldots, v_{2r+1,4r}, v_{2r+2,1}, v_{2r+2,2}, \ldots, v_{2r+2,4r}, \ldots, v_{3r,1}, v_{3r,2}, \ldots, v_{3r,4r}$. Finally we assign the label 3 to the *r* copies of 4*r* vertices $v_{3r+1,1}, v_{3r+2,2}, \ldots, v_{3r+2,4r}, \ldots, v_{4r,1}, v_{4r,2}, \ldots, v_{4r,4r}$.

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4r + 1, $r \in \mathbb{N}$. Label the vertices u_i , v_i , $v_{i,j}$ $(1 \le i \le 4r)$, $(1 \le j \le 4r)$ as in Case 1. We now assign the labels 2, 0 to the vertices u_{4r+1} , v_{4r+1} . Next we assign the label 0 to the r + 1 vertices $v_{4r+1,1}$, $v_{4r+1,2}$, ..., $v_{4r+1,r+1}$. Now we assign the label 1 to the r vertices $v_{4r+1,r+2}$, $v_{4r+1,r+3}$, ..., $v_{4r+1,2r+1}$. Finally we assign the label 3 to the 2r vertices $v_{4r+1,2r+2}$, $v_{4r+1,2r+3}$, ..., $v_{4r+1,4r+1}$.

Case 3. $n \equiv 2 \pmod{4}$.

Let $n = 4r + 2, r \in \mathbb{N}$. As in Case 1, we now assign the label to the vertices $u_i, v_i, v_{i,j}$ $(1 \le i \le 4r, 1 \le j \le 4r)$. Now we assign the labels 3, 0, 0, 1 to the vertices $u_{4r+1}, u_{4r+2}, v_{4r+1}, v_{4r+2}$. Next we assign the label 3 to the 4r + 2 vertices $v_{4r+1,1}, v_{4r+1,2}, \ldots, v_{4r+1,4r+2}$. Finally we assign the label 0 to the 4r + 2 vertices $v_{4r+2,1}, v_{4r+2,2}, \ldots, v_{4r+2,4r+2}$.

Case 4. $n \equiv 3 \pmod{4}$.

Let n = 4r + 3, $r \in \mathbb{N}$. Label the vertices u_i , v_i , $v_{i,j}$ $(1 \le i \le 4r + 2)$, $(1 \le j \le 4r + 2)$ as in Case 3. Next we assign the labels 1, 0 to the vertices u_{4r+3} , v_{4r+3} . Now we assign the label 0 to the r + 1 vertices $v_{4r+3,1}$, $v_{4r+3,2}$, ..., $v_{4r+3,r+1}$. We now assign the label 1 to the r vertices $v_{4r+3,r+2}$, $v_{4r+3,r+3}$, ..., $v_{4r+3,2r+1}$. Finally we assign the label 3 to the 2r + 2vertices $v_{4r+3,2r+2}$, $v_{4r+3,2r+3}$, ..., $v_{4r+3,4r+3}$.

Thus this vertex labeling f is a 4-total mean cordial labeling follows from the Table 1 and Table 2.

n	$t_{mf}(0)$	$t_{mf}(1)$
n = 4r	$4r\left(2r+1\right)-1$	$4r\left(2r+1\right)$
n = 4r + 1	$8r\left(r+1\right)+2$	$8r\left(r+1\right)+1$
n = 4r + 2	$4r\left(2r+3\right)+3$	$4r\left(2r+3\right)+4$
n = 4r + 3	$8r\left(r+2\right)+7$	$8r\left(r+2\right)+8$

Table 1: vertex labeling f(1)

n	$t_{mf}(2)$	$t_{mf}(3)$	
n = 4r	$4r\left(2r+1\right)$	$4r\left(2r+1\right)$	
n = 4r + 1	$8r\left(r+1\right)+1$	$8r\left(r+1\right)+1$	
n = 4r + 2	$4r\left(2r+3\right)+4$	$4r\left(2r+3\right)+4$	
n = 4r + 3	8r(r+2) + 7	$8r\left(r+2\right)+7$	

Table 2: vertex labeling f(2)

Case 5. n = 2, 3.

A 4-total mean cordial labeling of $(P_2 \odot K_1) \odot K_{1,2}$, $(P_3 \odot K_1) \odot K_{1,3}$ is given in Table 3 and Table 4.

n	u_1	u_2	u_3	v_1	v_2	v_3
2	2	3	—	0	1	—
3	3	3	3	0	1	1

Table 3: $(P_2 \odot K_1) \odot K_{1,2}$

$\left \lfloor n \right \rfloor$	$v_{1,1}$	$v_{1,2}$	$v_{1,3}$	$v_{2,1}$	$v_{2,2}$	$v_{2,3}$	$v_{3,1}$	$v_{3,2}$	$v_{3,3}$
2	3	3	—	0	0	—	—	—	—
3	0	0	0	1	1	1	2	3	3

Table 4: $(P_3 \odot K_1) \odot K_{1,3}$

Example 4.3. A 4 - total mean cordial labeling of $(P_5 \odot K_1) \odot K_{1,5}$ is given in figure 1.

Figure 1: 4 - total mean cordial labeling of $(P_5 \odot K_1) \odot K_{1,5}$

Theorem 4.4. $G^{(n)}$ is 4-total mean cordial for all values of $n \ge 2$.

Proof Take the vertex set and the edge set of $G^{(n)}$ as in Definition 3.5. Note that $|V(G_{(n)})| + |E(G_{(n)})| = 2n^2 + 4n - 1.$

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \in \mathbb{N}$. Assign the label 0 to the *r* vertices u_1, u_2, \ldots, u_r . Now we assign the label 1 to the *r* vertices $u_{r+1}, u_{r+2}, \ldots, u_{2r}$. Next we assign the label 2 to the *r* vertices $u_{2r+1}, u_{2r+2}, \ldots, u_{3r}$. Then we assign the label 3 to the *r* vertices $u_{3r+1}, u_{3r+2}, \ldots, u_{4r}$. Now we assign the label 0 to the *r* vertices v_1, v_2, \ldots, v_r . Next we assign the label 1 to the *r* vertices $v_{r+1}, v_{r+2}, \ldots, v_{2r}$. We now assign the label 2 to the *r* vertices $v_{2r+1}, v_{2r+2}, \ldots, v_{3r}$. Next we assign the label 3 to the *r* vertices $v_{3r+1}, v_{3r+2}, \ldots, v_{4r}$.

Next we assign the label 0 to the r vertices w_1, w_2, \ldots, w_r . Now we assign the label 1 to the r vertices $w_{r+1}, w_{r+2}, \ldots, w_{2r}$. We now assign the label 2 to the r vertices $w_{2r+1}, w_{2r+2}, \ldots, w_{3r}$. Next we assign the label 3 to the r vertices $w_{3r+1}, w_{3r+2}, \ldots, w_{4r}$.

Assign the label 0 to the r copies of 4r - 1 vertices $w_{1,1}, w_{1,2}, \ldots, w_{1,4r-1}, w_{2,1}, w_{2,2}, \ldots, w_{2,4r-1}, \ldots, w_{r,1}, w_{r,2}, \ldots, w_{r,4r-1}$. Next we assign the label 1 to the r copies of 4r - 1 vertices $w_{r+1,1}, w_{r+1,2}, \ldots, w_{r+1,4r-1}, w_{r+2,1}, w_{r+2,2}, \ldots, w_{r+2,4r-1}, \ldots, w_{2r,1}, w_{2r,2}, \ldots$

 $w_{2r,4r-1}$. Now we assign the label 2 to the *r* copies of 4r - 1 vertices $w_{2r+1,1}, w_{2r+1,2}, \ldots, w_{2r+1,4r-1}, w_{2r+2,1}, w_{2r+2,2}, \ldots, w_{2r+2,4r-1}, \ldots, w_{3r,1}, w_{3r,2}, \ldots, w_{3r,4r-1}$. Finally we assign the label 3 to the *r* copies of 4r - 1 vertices $w_{3r+1,1}, w_{3r+1,2}, \ldots, w_{3r+1,4r-1}, w_{3r+2,1}, w_{3r+2,2}, \ldots, w_{3r+2,4r-1}, \ldots, w_{4r,1}, w_{4r,2}, \ldots, w_{4r,4r-1}$.

Case 2. $n \equiv 1 \pmod{4}$.

Let $n = 4r + 1, r \in \mathbb{N}$. As in case 1, Label the vertices $u_i, v_i, w_i, w_{i,j}$ $(1 \le i \le 4r),$ $(1 \le j \le 4r - 1)$. Now we assign the labels 3, 1, 0 to the vertices $u_{4r+1}, v_{4r+1}, w_{4r+1}$. Next we assign the label 0 to the r + 1 vertices $w_{4r+1,1}, w_{4r+1,2}, \ldots, w_{4r+1,r+1}$. We now assign the label 1 to the r - 1 vertices $w_{4r+1,r+2}, w_{4r+1,r+3}, \ldots, w_{4r+1,2r}$. Now we assign the label 2 to the vertex $w_{4r+1,2r+1}$. Finally we assign the label 3 to the 2r - 1 vertices $w_{4r+1,2r+2}, w_{4r+1,2r+3}, \ldots, w_{4r+1,4r}$.

Case 3. $n \equiv 2 \pmod{4}$.

Let $n = 4r + 2, r \in \mathbb{N}$. Now we assign the label to the vertices $u_i, v_i, w_i, w_{i,j}$ $(1 \le i \le 4r), (1 \le j \le 4r - 1)$, as in case 1. we now assign the labels 2, 3, 0, 0, 0, 1 to the vertices $u_{4r+1}, u_{4r+2}, v_{4r+1}, v_{4r+2}, w_{4r+1}, w_{4r+2}$. Next we assign the label 3 to the 4r + 1 vertices $w_{4r+1,1}, w_{4r+1,2}, \ldots, w_{4r+1,4r+1}$. Finally we assign the label 0 to the 4r + 1 vertices $w_{4r+2,2}, \ldots, w_{4r+2,4r+1}$.

Case 4. $n \equiv 3 \pmod{4}$.

Let n = 4r+3, $r \in \mathbb{N}$. Label the vertices $u_i, v_i, w_i, w_{i,j}$ $(1 \le i \le 4r+2)$, $(1 \le j \le 4r+1)$ as in Case 3. Next we assign the labels 2, 1, 0 to the vertices $u_{4r+3}, v_{4r+3}, w_{4r+3}$. Now we assign the label 0 to the r+1 vertices $w_{4r+3,1}, w_{4r+3,2}, \ldots, w_{4r+3,r+1}$. Next we assign the label 1 to the r vertices $w_{4r+3,r+2}, w_{4r+3,r+3}, \ldots, w_{4r+3,2r+1}$. Finally we assign the label 3 to the 2r+1 vertices $w_{4r+3,2r+2}, w_{4r+3,2r+3}, \ldots, w_{4r+3,4r+2}$.

f is a 4-total mean cordial labeling follows from the Table 5 and Table 6.

order of n	$t_{mf}(0)$	$t_{mf}(1)$
n = 4r	4r(2r+1) - 1	$4r\left(2r+1\right)$
n = 4r + 1	$8r\left(r+1\right)+2$	$8r\left(r+1\right)+1$
n = 4r + 2	4r(2r+3)+4	4r(2r+3)+4
n = 4r + 3	$8r\left(r+2\right)+8$	$8r\left(r+2\right)+7$

Table 5: $t_{mf}(0,1)$

order of n	$t_{mf}(2)$	$t_{mf}(3)$
n = 4r	$4r\left(2r+1\right)$	$4r\left(2r+1\right)$
n = 4r + 1	8r(r+1) + 1	$8r\left(r+1\right)+1$
n = 4r + 2	4r(2r+3)+3	4r(2r+3)+4
n = 4r + 3	8r(r+2) + 7	$8r\left(r+2\right)+7$

Table 6: $t_{mf}(2,3)$

Case 5. n = 2, 3.

4 - total mean cordial labeling of $G^{(2)}$, $G^{(3)}$ is given in Table 7 and Table 8.

n	u_1	u_2	u_3	v_1	v_2	v_3	w_1	w_2	w_3
2	0	0	_	1	1	—	2	2	—
3	2	3	2	0	0	1	0	1	0

Table 7: 4 - total mean cordial labeling of $G^{(2)}, G^{(3)}$

n	$w_{1,1}$	$w_{1,2}$	$w_{2,1}$	$w_{2,2}$	$w_{3,1}$	$w_{3,2}$
2	3	3	—	—	—	—
3	3	3	0	0	3	3

Table 8: 4 - total mean cordial labeling of $G^{(2)}$, $G^{(3)}$

Theorem 4.5. BT(n,n) is 4-total mean cordial for all values of $n \ge 2$.

Proof Let us now denote by $V(BT(n,n)) = \{u, u_i, v_i, v_{i,j} : 1 \le i \le n, 1 \le j \le n-2\}$ and $E(BT(n,n)) = \{uu_i, u_iv_i, v_iv_{i,j} : 1 \le i \le n, 1 \le j \le n-2\}$ respectively the vertex and edge sets of BT(n,n). Clearly $|V(BT(n,n))| + |E(BT(n,n))| = 2n^2 + 1$.

Assign the label 3 to the vertex u. Now we assign the label 2 to the n vertices u_1, u_2, \ldots, u_n . Next we assign the label 0 to the n vertices v_1, v_2, \ldots, v_n .

Case 1. $n \equiv 0 \pmod{4}$. Let $n = 4r, r \in \mathbb{N}$. Assign the label 0 to the *r* copies of 4r - 2 vertices $v_{1,1}, v_{1,2}, \ldots, v_{1,4r-2}, v_{2,1}, v_{2,2}, \ldots, v_{2,4r-2}, \ldots, v_{r,1}, v_{r,2}, \ldots, v_{r,4r-2}$. Now we assign the label 1 to the *r* copies of 4r - 2 vertices $v_{r+1,1}, v_{r+1,2}, \ldots, v_{r+1,4r-2}, v_{r+2,1}, v_{r+2,2}, \ldots, v_{r+2,4r-2}, \ldots, v_{2r,1}, v_{2r,2}, \ldots, v_{2r,4r-2}$. Next we assign the label 3 to the 2*r* copies of 4r - 2 vertices $v_{2r+1,1}, v_{2r+1,2}, \ldots, v_{2r+1,4r-2}, v_{2r+2,1}, v_{2r+2,2}, \ldots, v_{3r,1}, w_{3r,2}, \ldots, w_{3r,4r-2}, v_{3r+1,1}, v_{3r+1,2}, \ldots, v_{3r+1,4r-2}, v_{3r+2,1}, v_{3r+2,2}, \ldots, v_{3r+2,4r-2}, \ldots, v_{4r,1}, v_{4r,2}, \ldots, v_{4r,4r-2}$. Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4r + 1, $r \in \mathbb{N}$. As in case 1, Label the vertices $v_{i,j}$ $(1 \le i \le 4r)$, $(1 \le j \le 4r - 2)$. Next we assign the label 0 to the r vertices $v_{4r+1,1}, v_{4r+1,2}, \ldots, v_{4r+1,r}$. We now assign the label 1 to the r vertices $v_{4r+1,r+1}, v_{4r+1,r+2}, \ldots, v_{4r+1,2r}$. Finally we assign the label 3 to the 2r - 1 vertices $v_{4r+1,2r+1}, v_{4r+1,2r+2}, \ldots, v_{4r+1,4r-1}$.

Case 3. $n \equiv 2 \pmod{4}$.

Let n = 4r + 2, $r \ge 0$. Now we assign the label to the vertices $v_{i,j}$ $(1 \le i \le 4r)$, $(1 \le j \le 4r - 2)$, as in case 1. We now assign the label 0 to the r vertices $v_{4r+1,1}$, $v_{4r+1,2}$, ..., $v_{4r+1,r}$. Next we assign the label 1 to the r vertices $v_{4r+1,r+1}$, $v_{4r+1,r+2}$, ..., $v_{4r+1,r+2}$. Then we assign the label 3 to the 2r vertices $v_{4r+1,2r+1}$, $v_{4r+1,2r+2}$, ..., $v_{4r+1,4r}$.

We now assign the label 0 to the r vertices $v_{4r+2,1}$, $v_{4r+2,2}$, ..., $v_{4r+2,r}$. Next we assign the label 1 to the r vertices $v_{4r+2,r+1}$, $v_{4r+2,r+2}$, ..., $v_{4r+2,2r}$. Finally we assign the label 3 to the 2r vertices $v_{4r+2,2r+1}$, $v_{4r+2,2r+2}$, ..., $v_{4r+2,2r}$.

Case 4. $n \equiv 3 \pmod{4}$.

Let n = 4r + 3, $r \ge 0$. Label the vertices $v_{i,j}$ $(1 \le i \le 4r)$, $(1 \le j \le 4r - 2)$, as in case 1. Now we assign the label 0 to the r + 1 vertices $v_{4r+1,1}, v_{4r+1,2}, \ldots, v_{4r+1,r+1}$. Next we assign the label 1 to the r vertices $v_{4r+1,r+2}, v_{4r+1,r+3}, \ldots, v_{4r+1,2r+1}$. Then we assign the label 3 to the 2r vertices $v_{4r+1,2r+2}, v_{4r+1,2r+3}, \ldots, v_{4r+1,4r+1}$.

Next we assign the label 0 to the r vertices $v_{4r+2,1}$, $v_{4r+2,2}$, ..., $v_{4r+2,r}$. Now we assign the label 1 to the r + 1 vertices $v_{4r+2,r+1}$, $v_{4r+2,r+2}$, ..., $v_{4r+2,2r+1}$. We now assign the label 3 to the 2r vertices $v_{4r+2,2r+2}$, $v_{4r+2,2r+3}$, ..., $v_{4r+2,4r+1}$.

Now we assign the label 0 to the r vertices $v_{4r+3,1}$, $v_{4r+3,2}$, ..., $v_{4r+3,r}$. Next we assign the label 1 to the r vertices $v_{4r+3,r+1}$, $v_{4r+3,r+2}$, ..., $v_{4r+3,2r}$. Finally we assign the label 3 to the 2r + 1 vertices $v_{4r+3,2r+1}$, $v_{4r+3,2r+2}$, ..., $v_{4r+3,4r+1}$.

Thus this vertex labeling f is a 4-total mean cordial labeling follows from the Table 9 and Table 10.

size of n	$t_{mf}(0)$	$t_{mf}(1)$
n = 4r	$8r^2$	$8r^2$
n = 4r + 1	4r(2r+1)+1	4r(2r+1)+1
n = 4r + 2	8r(r+1)+2	$8r\left(r+1\right)+2$
n = 4r + 3	$4r\left(2r+3\right)+5$	$4r\left(2r+3\right)+5$

Table 9: $t_{mf}(0,1)$

51

size of n	$t_{mf}(2)$	$t_{mf}(3)$
n = 4r	$8r^2$	$8r^2 + 1$
n = 4r + 1	4r(2r+1)	4r(2r+1)+1
n = 4r + 2	8r(r+1)+2	8r(r+1) + 3
n = 4r + 3	$4r\left(2r+3\right)+4$	$4r\left(2r+3\right)+5$

Table 10: $t_{mf}(2,3)$

Example 4.6. A 4 - total mean cordial labeling of BT(4,4) is given in figure 2.

Figure 2: 4 - total mean cordial labeling of BT(4, 4)

Theorem 4.7. The coconut tree CT(n, n) is 4-total mean cordial for all values of $n \ge 2$.

Proof Let P_n be the path $u_1 u_2 \ldots u_n$ and $V(K(1, n)) = \{v, v_i : 1 \le i \le n \text{ and } v = u_n\}$ are the vertex set of CT(n, n) and edge set $E(CT(n, n))=E(P_n)\cup E(K_{1,n})$. Obviously |V(CT(n, n))| + |E(CT(n, n))| = 4n - 1.

Case 1. $n \equiv 0 \pmod{2}$.

Let $n = 2r, r \in \mathbb{N}$. Assign the label 0 to the r vertices u_1, u_2, \ldots, u_r . Now we assign the label 1 to the r vertices $u_{r+1}, u_{r+2}, \ldots, u_{2r}$. Next move to the vertices of the star $K_{1,n}$. We now assign the label 3 to the 2r vertices v_1, v_2, \ldots, v_{2r} .

Case 2. $n \equiv 1 \pmod{2}r$. Let $n \equiv 2r+1, r \in \mathbb{N}$. Assign the label 0 to the r+1 vertices $u_1, u_2, \ldots, u_{r+1}$. Next we assign the label 1 to the r vertices $u_{r+2}, u_{r+3}, \ldots, u_{2r+1}$. Finally we assign the label 3 to the 2r+1 vertices $v_1, v_2, \ldots, v_{2r+1}$.

f is a 4-total mean cordial labeling follows from the Table 11.

n	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$
n = 2r	2r - 1	2r	2r	2r
n = 2r + 1	2r + 1	2r	2r + 1	2r + 1

Table 11: $t_{mf}(0, 1, 2, 3)$

Example 4.8. A 4 - total mean cordial labeling of CT(5,5) is given in figure 3.

Figure 3: 4 - total mean cordial labeling of CT(5,5)

References

- I. Cahit, "Cordial Graphs: A weaker version of Graceful and Harmonious graphs", Ars combin., 23, 201-207, 1987.
- [2] J. A. Gallian, "A Dynamic survey of graph labeling", The Electronic Journal of Combinatorics, 25, 2022.
- [3] F. Harary, "Graph theory", Addision wesley, New Delhi, 1969.
- [4] R. Ponraj, A. Gayathri, S. Somasundaram, "4-Remainder Cordial of Some Tree Related Graphs", International J. Math .Combin, Vol. 2, 156-171, 2022.
- [5] R.Ponraj, S. Subbulakshmi, S. Somasundaram, "k-total mean cordial graphs", J.Math.Comput.Sci., 10, No.5, 1697-1711, 2020.
- [6] R. Ponraj, S. Subbulakshmi, S. Somasundaram, "4-total mean cordial graphs derived from paths", J.Appl and Pure Math. Vol 2, 319-329, 2020.
- [7] R. Ponraj, S. Subbulakshmi, S. Somasundaram, "4-total mean cordial labeling in subdivision graphs", *Journal of Algorithms and Computation*, 52, 1-11, 2020.

- [8] R. Ponraj, S. Subbulakshmi, S. Somasundaram, "Some 4-total mean cordial graphs derived from wheel", J. Math. Comput. Sci. 11, 467-476, 2021.
- [9] R. Ponraj, S. Subbulakshmi, S. Somasundaram, "4-total mean cordial graphs with star and bistar", *Turkish Journal of Computer and Mathematics Education*, 12, 951-956, 2021.
- [10] R. Ponraj, S. Subbulakshmi, S. Somasundaram, "On 4-total mean cordial graphs", J. Appl. Math and Informatics, Vol 39, 497-506, 2021.
- [11] R. Ponraj, S. Subbulakshmi, S. Somasundaram, "4-total mean cordial labeling of special graphs", *Journal of Algorithms and Computation*, 53, 13-22, 2021.
- [12] R. Ponraj, S. Subbulakshmi, S. Somasundaram, "4-total mean cordial labeling of union of some graphs with the complete bipartite graph $K_{2,n}$ ", Journal of Algorithms and Computation, 54, 35-46, 2022.
- [13] R. Ponraj, S. Subbulakshmi, S. Somasundaram, "4-total mean cordial labeling of some graphs derived from H-graph and star", *International J. Math. Combin*, Vol 3, 99-106, 2022.