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mance in terms of different benchmarks.
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1 Introduction

Large-scale applications have emerged as mobile and networking technologies have evolved
rapidly, requiring significant processing power, storage capacity, and/or networking re-
sources to operate efficiently. Computing resources and services can be accessed in the
cloud as and when required. It provides IT (Information Technology) infrastructure, inno-
vative services, and applications via the internet to a large number of end users. Modern
IT paradigms can be utilized to process and execute large scale applications efficiently
[9, 2].
As a result of cloud computing, or distributed computing worldwide, clients pay for every
service they use without understanding how the service is hosted and distributed [42, 13].
Performing tasks over processing units is a crucial function of cloud computing [14]. The
overall efficiency of cloud computing depends on task scheduling [6]. In cloud computing,
task scheduling is an NP-hard problem. Cloud computing services become more efficient
and faster when scheduling methods are efficient. Cloud scheduling issues are usually
solved using optimization algorithms [31]. The NP-problem can be solved using heuristics
and meta-heuristics [30, 19].
The major contributions of this paper are as follows:

• A novel task scheduling algorithm is proposed that simultaneously considers execu-
tion cost, load balancing, resource utilization, and makespan.

• The problem of task scheduling is formulated, and objective functions are presented
to map tasks to virtual machines in the most efficient way.

• The ability of WO to make a suitable trade-off between exploration and exploitation
makes it useful for scheduling.

• The presented algorithm is compared with GEO, FOX, STOA, and ZOA based on
extensive experimental testing.

This study is organized as follows. The main concepts and preliminary information are
described in Section 2. Section 3 discusses the related paper. Section 4 describes the
WOTSA algorithm. In section 5, the proposed algorithm is evaluated for its performance.
Future work is discussed in section 6. The full names of all the abbreviations used in the
article are listed in Table 1.

2 Background

2.1 Cloud computing

Cloud computing represents a new revolution in internet computing. In comparison with
distributed computing, it offers more advantages. In addition to being highly efficient,
cloud computing uses a large amount of computing power [40]. Pay-as-you-go models can
be used by Cloud Service Providers (CSPs) in regards to their virtual machines (VMs)
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Table 1. List of Acronyms

Abbreviation Full Name

WO Walrus Optimizer
WOTSA WO-based Task Scheduling Algorithm
FOX Fox Optimizer
GEO Golden Eagle Optimizer
ZOA Zebra Optimization Algorithm
STOA Sooty Tern Optimization Algorithm
IT Information Technology
CSPs Cloud Service Providers
VMs Virtual Machines
IaaS Infrastructure as a Service
PaaS Platform as a Service
SaaS Software as a Service
PSO Particle Swarm Optimization
HWOA Hybrid Whale Optimization Algorithm
MBA Mutation-based Bees Algorithm
WOA Whale Optimization Algorithm
RDWOA Random Double adaptive Whale Optimization Algorithm
CS Cuckoo Search
TSP Task Scheduling Problem
GA Genetic Algorithm
GSA Gravitational Search Algorithm
ACO Ant Colony Optimization
LBACO Load Balancing Ant Colony
ABFSOS Adaptive Benefit Factor based Symbiotic Organisms Search
CMABFSOS Mult-objective Constrained ABFSOS
MVO Multi-Verse Optimization
IMOMVO Improved Multi-objective Multi-Verse Optimizer
NSGAII Non-dominated Sorting Genetic Algorithm II
QOS Quality of Service

[23]. Further, cloud computing can be used to access a variety of software, and DCs can be
used to store the cloud customer’s critical data as well as security features [16]. Service
providers provide security and compliance to drive the maturing market and adoption
of cloud computing. There are several reasons for this growth, including the increased
flexibility and cost savings that cloud services will provide [26, 39]. The components of a
basic cloud computing architecture diagram are as follows (see Fig. 1):

• Cloud Infrastructure: The components of physical and virtual infrastructure, in-
cluding servers, storage, and networking. Cloud infrastructure security guidelines,
rules, and practices are usually defined by information security professionals [34].
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• Virtualization Layer: It illustrates the way virtualization technology abstracts and
distributes resources across clouds. Virtualization is a process that separates the
physical environment from the services and resources that are deployed. Many ben-
efits can be derived from virtualized environments. The complexity of virtualization
and the number of entry points present new challenges for attackers [28, 3].

• Service Models: Showcases various service models, including Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). As
a result, it is flexible enough to handle rapidly changing customer needs and gives
customers a reliable solution.

• Deployment Models: There are several types of cloud deployments, including public,
private, hybrid and community.

• Users and Devices: Describes end users and client devices accessing cloud services.

Figure 1. The cloud computing architecture.

Firewalls, encryption, and access controls are all part of cloud security. The provision of
services includes security features such as authentication and encryption. Data security,
availability, and safety must be ensured by the vendors. Cloud infrastructure depends
on scalability, instant elasticity, and metering resources. In the public cloud, unstruc-
tured data is stored in a multi-tenant environment [38]. Private cloud services provide
a dedicated storage environment protected behind a firewall owned by the customer or
organization. In hybrid clouds, private and public cloud services are mixed together to
provide more data deployment options and business flexibility.

2.2 Task scheduling

Scheduling involves allocating jobs to available resources. Nodes and resources are capable
of running tasks as the smallest numerical units. There are many parameters that can
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be attached to a task. An operation requires a resource. As an example, a processor
that processes data, a data storage device, or a network link that transports data. Cloud
providers and consumers face scheduling problems.
Resource scheduling: Physical machines and servers can be scheduled on demand for
random tasks. It is possible to run multiple processes on a single VM, but this degrades
performance. Long-term holding of a VM can lead to under provisioning. Service costs
increase as over-provisioning consumes resources and time excessively [41].
Workflow Scheduling: This tool helps map processes and manage the interdependen-
cies between work within a process. Resources are also allocated to ensure that various
workflows are completed in accordance with objectives [11].
Task Scheduling: Resources are assigned tasks based on their homogeneity, heterogene-
ity, or centralization. One scheduler is used by all systems to schedule different tasks
in centralized task scheduling. Furthermore, centralized scheduling lacks scalability and
fault tolerance. Each task sent to the cloud system is handled by a series of schedulers
[18, 7].

Figure 2. Task scheduling model.

It is important for cloud consumers to execute their jobs in order to solve problems of
varying sizes and complexity. Cloud consumers will benefit from wisely selecting and
aggregating resources, while cloud providers can maximize their resource utilization. In
NP-hard task scheduling problems, a set of tasks is assigned to a set of resources in a
way that achieves a specific objective, such as minimizing the overall completion time or
resource utilization. This problem belongs to the class of problems that have no known
efficient algorithm that can solve them in polynomial time. In order to find near-optimal
solutions in a reasonable amount of time, researchers often use heuristics and approxima-
tion algorithms. It is possible to get good practical solutions from these algorithms by
trading optimality for efficiency. The optimal solution to these problems cannot be de-
rived from any algorithm in polynomial time [1]. The process of generating schedules has
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a high overhead. Due to the competition for resources and time in the cloud, metaheuris-
tic algorithms like PSO are used [37]. Figure 2 illustrates how cloud computing tasks are
scheduled. In general, task scheduling models entail a set of dependent tasks (performed
by the user) coupled with an interconnected processor. The purpose of this modeling is
to determine an optimal distribution strategy for cloud nodes. It is important to under-
stand the resources required to perform a particular task (CPU, memory, storage), the
execution time, and any dependencies (if any). Each task is assigned a resource by the
scheduler. Task dependencies are taken into account in dependency-aware scheduling, to
ensure tasks are executed in the correct order to avoid deadlocks. Distributed schedulers
are often used in cloud computing environments to schedule tasks across multiple servers
and data centers. Resource allocation and task placement are optimized using heuristic
optimization techniques, queueing theory, and machine learning algorithms. Performance
and SLA requirements of the applications and users must be met if high throughput, low
latency, and efficient resource utilization are to be achieved.
In addition to their ease of use, self-organization, scalability, and robustness, metaheuristic
algorithms play a crucial role in task scheduling and load balancing.

2.3 Walrus Optimizer (WO)

The metaheuristic algorithm optimizes the search process by exploitation and exploration.
As real-life optimization problems have become more complex, more metaheuristic algo-
rithms have been developed. Walruses use key signals to migrate, breed, roost, feed,
gather, and escape (danger signals and safety signals). WO [15] enhances optimization
calculation efficiency by advancing artificial intelligence applications and promoting con-
tinuous development.
To solve searching optimization problems, WO emulates the social and foraging behaviors
of walruses while migrating, breeding, roosting, feeding, gathering, and escaping. By
balancing exploration and exploitation, the algorithm is able to find high-quality solutions.
When the danger signal is received, the WO determines whether to explore or exploit. The
new domain is selected when the danger signal exceeds one during the exploration phase
of the algorithm. When an algorithm reaches its late stage, the walrus herd reproduces
(exploitation). As a result of the security signal, individual walrus chooses whether to
roost or forage during the exploitation phase. In addition, danger signals also control
foraging behavior. During the exploitation phase, the safety signal influences whether the
walrus chooses to roost or forage. Figure 3 shows the main steps of this algorithm.
The main steps of the WO algorithm are shown in the above figure (Figure 3):

1. Set the population size: Define a population of walrus agents with random
positions in the search space.

2. Prey Selection: Walrus agents select prey (best solution) based on fitness and
weighting.

3. Migration: Walrus agents move towards their selected prey, with a step size de-
termined by their distance and speed from the prey.
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Figure 3. The main steps of WO.

4. Breeding: A combination of their positions and random perturbations generates
offspring (new solutions).

5. Roosting and Feeding, Gathering, and Escaping: Local search (local roost-
ing) and global search (global feeding) are conducted by walrus agents randomly.
Their positions are updated according to the best solutions found during roosting
and feeding. Convergence is enhanced by Walrus agents gathering around the best
solution found so far.

6. Weighting Mechanism: Exploration and exploitation are dynamically balanced
by the weighting mechanism. Exploration initially covers a larger search space and
the algorithm refines the search around promising areas. The best solution is the
one that minimizes the objective function by mapping tasks to virtual machines.

WO parameters and assignments are as follows [15]:

• A typical population contains between 30 and 100 walrus agents. Populations with
larger sizes allow the algorithm to explore a larger search space, but they also
increase computation costs.

• Maximum number of iterations: It is based on the complexity of the problem and
the quality of the solution. More iterations can lead to better solutions, but they
also cost more.

• Weighting factor ω: The value is initially set high (e.g., 0.9) to facilitate exploration.
The weighting factor should be gradually reduced to favor exploitation.

• Migration rate: It is usually set between 0.1 and 0.5. The higher the migration rate,
the faster the algorithm will converge, but it may also prematurely converge.

• Breeding probability: In most cases, it is set between 0.5 and 0.9. It increases the
likelihood of breeding a new solution, but slows convergence speed.
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• Roosting probability: It is usually set between 0.1 and 0.3. The higher the roosting
probability, the harder it will be for the algorithm to discover new areas to explore.

• Feeding probability: This value is usually set between 0.1 and 0.3. It is useful for
exploring new search space, but it hampers refinement of the best answers.

• Gathering probability: It is usually set between 0.1 and 0.2. Higher gathering
probabilities mean faster convergence.

• Escaping probability: It is usually set between 0.01 and 0.1. The higher the escaping
probability, the less likely the algorithm is to get stuck in local optima.

In search space, danger signals indicate areas associated with poor solutions. Walrus
agents avoid moving toward high danger areas. There are good solutions in a search
space with a safety signal. Agents tend to move towards areas with high safety signals.
While migrating, each walrus agent calculates the danger and safety signals. Fitness
of the solutions at those positions determines safety and danger signals. The highest
safety signals and the lowest danger signals are favored by walruses. As a result, the
walrus agents are guided towards areas with promising solutions and away from areas with
inadequate ones. Gaussian functions are typically used in the WO algorithm to represent
danger and safety signals. As the distance from the prey increases, the Gaussian function
decreases in value.

3 Related Work

System performance is greatly affected by scheduling tasks in cloud computing. It is
necessary to improve and optimize the algorithm serving the task scheduling process. This
section discusses some of the latest task scheduling techniques. In order to improve the
performance and customer satisfaction level of cloud systems, task scheduling needs to be
addressed. In addition, the task scheduling scheme has a direct impact on the execution
time and execution cost. Manikandan et al. [22] proposed an HWOA-based MBA for
solving multi-objective task scheduling problems. Multi-objective behavior minimizes
resource utilization in the hybrid WOA-based MBA algorithm. The Bees algorithm uses
mutation operators to enhance RDWOA’s output. Resource utilization, makepan, and
execution time are used to assess performance.
A Cat Swarm Optimization algorithm was used by Mangalampalli et al. [20] to schedule
tasks based on the parameters of makespan, migration time, energy consumption, and
total power cost. Prioritization at the task level determines which VMs should receive
tasks, and priorities at the VM level determine which VMs should receive tasks. It
uses CloudSim simulator to simulate power costs and generates input randomly from
CloudSim. Comparing the proposed algorithm with existing algorithms such as PSO
(Particle Swarm Optimization) and CS (Cuckoo Search). The metrics evaluated included
makespan, migration time, energy consumption, and total power cost, and migration time
was reduced by 34% versus PSO and 29% versus CS.
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Pirozmand et al. [29] proposed a hybrid algorithm for solving the Task Scheduling Prob-
lem (TSP) in cloud computing called GSAGA. In spite of its high search ability, the
Genetic Algorithm (GA) is inefficient at local search and stability. Consequently, a stable
algorithm can be developed by combining the GA and the Gravitational Search Algorithm
(GSA). VM analysis is used to determine energy consumption, gain cost, and makespan
in GSAGA.
Manikandan et al. [21] proposed a method for efficient resource allocation using Black
widow optimization in combination with fish swarm optimization to reduce cost, energy,
and resource utilization. As compared to three other algorithms, the proposed method
performed well as far as time, energy, and cost were concerned.
The evolution of cloud computing has reduced costs and improved results. Users use
applications, information, data, and applications, as well as resources. In addition, it is
important to maintain the system’s stability and to be flexible when making changes.
Using a neural network to schedule many activities, Sharma et al. [33] presented an
updated ACO approach for optimizing global search. Multi-objective techniques can
be combined to optimize the organization of tasks and resources. Optimization of the
objective function was more effective and faster using LBACO. The ACO approach reduces
mean access times and ensures consistent job assignments.
Abdallahi et al. [4] proposed an adaptive benefit factor based symbiotic organisms search
(ABFSOS) for faster convergence speed by adapting SOS control parameters. Fine-tuning
the penalty function values may prevent infeasible solutions and premature convergence.
It investigates the performance of a multi-objective constrained ABFSOS framework
(CMABFSOS) on a standard simulator (CloudSim). In all workload instances, the pro-
posed CMABFSOS algorithm produced non-dominated solutions that outperformed the
compared algorithms (EMS-C, ECMSMOO). The proposed CMABFSOS algorithm im-
proved significantly over the compared algorithms in terms of hypervolume (convergence
and diversity). When compared to EMS-C, CMABFSOS performs 17.02 to 47.73% better,
whereas ECMSMOO performs 19.98 to 52.18% better.
The multiverse optimization algorithm (MVO) is one of the most widely used algorithms
today. Because MVO restricts search space to the best solution, the search domain is
poor, therefore, the search time is long. To solve task scheduling problems, Otair et al.
[27] introduced an improved multi-objective multi-verse optimizer (IMOMVO). IMOMVO
is introduced as a result of the disadvantages of the original version of MVO as well as its
enhanced version. The best and second-best solutions are used for solving the problem
of average positioning. It was evaluated using a variety of datasets containing tasks
and virtual machines. There are three metrics included in the validation process: task
execution time, throughput, and VM processing power. The proposed method performed
better than other state-of-the-art methods. In order to evaluate the proposed work, three
objectives were used: Execution Time, Throughput, and Makespan.
Imene et al. [17] proposed a multi-objective scheduling method for cloud VMs that
used Non-dominated Sorting Genetic Algorithm (NSGA-III). Multi-objective adaptation
is used to minimize cost, runtime, and power consumption. A performance comparison
showed that NSGAIII was more efficient than its predecessor, Non-dominated Sorting
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Genetic Algorithm II (NSGAII).
An analysis of the scheduling algorithms is provided in Table 2. All three parameters have
a significant impact on cloud system efficiency, as outlined in Table 2. Several parameters,
including makespan, resource utilization, load balancing, and execution costs, are taken
into account in the algorithm presented in this paper.

Table 2. Comparison of the scheduling algorithms in cloud environment

Reference Year Performance
metrics

Simulation
tool

Algorithm
type

Technique
used for
improving
QoS

Advantages &
Disadvantages

Manikandan
et al. [22]

2022 Task com-
pletion
time and
execution
time

Not re-
ported

HWOA
based
MBA

Accelerate
computa-
tions

It is important
to consider
overloads,
memory us-
age, and peak
demands.

Mangalampalli
et al. [20]

2022 Makespan,
energy con-
sumption,
cost, and
migration
time

CloudSim The cat
swarm
opti-
mization
algorithm
is used
for multi-
objective
task
schedul-
ing in
cloud
comput-
ing

A good per-
formance is
achieved in
makespan,
migra-
tion time,
energy con-
sumption,
and total
power con-
sumption.

The algo-
rithm didn’t
evaluate in
real time
environment.

Pirozmand
et al. [29]

2022 Energy
consump-
tion, gain
cost, and
makespan

CloudSim
3.3 and
the Net-
Beans

GSAGA By eval-
uating
runtime,
energy con-
sumption,
cost, and
makespan,
the pro-
posed
GSAGA
hybrid
algorithm
enhances
the VM
analysis
system.

SDN-based
networks and
container-
based cloud
applications
improve qual-
ity of service
(QoS).
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Manikandan
et al. [21]

2022 Cost, en-
ergy, and
resource
utilization

CloudSim BWFSO In order
to reduce
costs, en-
ergy, and
resource
usage, it
allocates
resources
efficiently.

Using virtual
machine (VM)
instances for
scheduling
has a number
of draw-
backs, includ-
ing lengthy
startup times
and resource
consumption.
Inefficiencies
like this could
limit the ef-
fectiveness of
traditional
VM-based
scheduling
methods.

Sharma et al.
[33]

2022 Cost and
execution
time

CloudSim LBACO LBACO
optimizes
the ob-
jective
function
best. More-
over, it is
the fastest.
Besides
providing
higher
statistics
and mean
access
times, it
also pro-
vides more
consistent
assignment
patterns.

ACO-based
models should
be tailored
to high-
dimensional
datasets. A
multi-mode
resource-
constrained
project
scheduling
challenge can
also be ex-
amined. It’s
important
to look at
the dynamic
limitations
or tasks on
the first fun-
damental
solutions in
the cloud-
based project
tasks.
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Abdullahi et
al. [4]

2021 Convergence
and diver-
sity

CloudSim ABFSOS The pro-
posed
algorithm
which re-
sults in
better
global con-
vergence,
thereby
producing
better task
schedule
solutions.

More efficient
methods of
handling the
control pa-
rameters can
be investi-
gated through
empirical
analysis.

Otair et al.
[27]

2022 Execution
time,
throughput

CloudSim IMOMVO Throughput
results
for the
IMOMVO
task
scheduling
algorithm
were 0.79,
allowing
more tasks
to be com-
pleted. In
this ratio,
more tasks
are exe-
cuted in a
single slot.

The impor-
tant metrics
like energy,
cost, load bal-
ancing, and
security didn’t
consider.

Imene et al.
[17]

2022 Runtime,
cost, and
energy con-
sumption

CloudSim NSGAIII NSGAIII
has shown
better re-
sults for
the objec-
tives than
NSGAII on
one hand
and for the
good func-
tioning of
the system
itself on the
other.

The appli-
cation of
NSGAIII can
cite with more
than three
QoS values.
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The pro-
posed
method

2024 Cost, re-
source
utilization,
load bal-
ancing, and
makespan

MATLAB WOTSA The pro-
posed algo-
rithm can
also avoid
falling into
the local
optimal
trap and
has better
conver-
gence.

We intend to
consider other
important pa-
rameters such
as security,
scalability,
and availabil-
ity.

4 The WOTSA (Walrus Optimization Task Schedul-

ing Algorithm)

During task scheduling, submitted tasks are assigned to available resources in order to
maximize resources’ utilization and QoS. Therefore, task assignments are determined by
restrictions imposed by users and cloud providers [12]. Using WOTSA, the proposed algo-
rithm generates a set of solutions and divides them into groups to solve the task scheduling
problem. In Subsection 4.1, the task scheduling problem concepts are introduced and in
Subsection 4.2, the objective function of WOTSA is discussed.

4.1 Task scheduling modeling

VMs are assigned tasks based on user needs and service quality by the data center broker
and cloud information service. Various quality of service metrics are improved by task
scheduling in cloud computing. Suppose a cloud data center consists of n number of the
task such as: Task = {Task1, Task2, . . . , Taskn} , where Taski indicated the i− th task,
and m number of VMs such as: VM = {VM1, V M2, . . . , V Mm} , where VMj indicated
the j − th VM. The condition for executing such tasks is that n > m.
It considers four important criteria simultaneously, namely makespan, cost, resource uti-
lization, and load balancing. The makespan is a metric that describes the time it takes
to finish the last task and exit the cloud system. Minimizing costs increases the user’s
profit. According to the scheduling algorithm, the lowest-cost VM is selected to execute
the task to minimize execution costs. Providing high system performance and optimizing
resource utilization is possible through load balancing by distributing computation work-
loads across available resources (like virtual machines or servers). In load balancing, tasks
are distributed evenly across the available resources, preventing one resource from being
overworked while others remain underutilized. As a result of this optimization, idle time
is reduced and computational resources are utilized more efficiently.
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4.2 Objective function

As a result of WOTSA, all tasks are scheduled so that their makespan, resource utilization,
and execution cost are minimized. As a result, the user is satisfied and the efficiency
increases. The algorithm outputs a matrix with m columns and n rows indicating which
VM should execute each task. The objective function is calculated as follows:

X =

 x11 . . . x1m
...

. . .
...

xn1 · · · xnm

 (1)

where xij is a decision variable and calculated by:

xij =

{
1 if Ti is assigned to VMj

0 if Ti is not assigned to VMj
(2)

With this condition:
m∑
j=1

xij = 1 for 1 ≤ i ≤ n (3)

The agent adapts to the task based on the information it receives. Afterward, task
positions are randomly assigned based on the task. After that, each number is rounded
up. It indicates that the task has been assigned to that VM. The second virtual machine
is assigned to the fourth task when its number is rounded to 2.
Makespan: Makespan refers to the time it takes for all tasks to be completed by re-
sources. The effectiveness of resource utilization determines how well VMs are utilized in
the cloud. Reducing the makespan rate will satisfy the user and speed up the executions.
Makespan is defined as follows [32]:

Makespan = max (Extj) , 1 ≤ j ≤ m (4)

Where Extj is the VMj execution time which calculated based on Eq. 5.

Extj =
n∑

i=1

xij × CTij (5)

Where Xij is the decision variable and CTij is the completion time of executing task i on
VMj which calculated by Eq. 6.

CTij =
lengthoftheTaski

processingtimeoftheVMj

(6)

Resource Utilization (RU): Efficiency refers to the number of resources a system
utilizes efficiently. It maximizes cloud service provider profits by minimizing idle time



160 Z. Jalali Khalil Abadi/ JAC 56 issue 1, August 2024, PP. 146–171

and keeping resources busy executing customer tasks. Based on this definition, the RU is
[36]:

RU =
TEXEC

Makespan×M
(7)

Where M shows the number of VMs and TEXEC is the total execution time which
calculated by Eq. 8.

TEXECij =
m∑
i=1

VMETj, 1 ≤ j ≤ M (8)

Where VMETj is the execution time of j − th VM which calculated based on Eq. 9.

VMETj =
M∑
i=0

xij × EXECij, 1 ≤ j ≤ M (9)

Which N shows the number of Tasks, and EXECij is the execution time of Task i on
virtual machine VMj that obtained based on Eq. 10.

EXECij =
LTaski

CapVMj

(10)

Where LTaski is the computing time for executing Task i and CapVMj
is the capacity of

virtual machine j.
Execution Cost: Execution cost depends on how much a VM costs per unit of time and
how long it takes to execute a task. In this way, a suitable task scheduling algorithm can
allocate tasks to VMs in an optimal way so that execution costs can be reduced. The
execution cost of Task i can be calculated as follows [5]:

ECij = Pricej ×
CTij

3600
(11)

Where Pricej is the price of VMj and CTij is the completion time of executing Task i on
VMj.
Load Balancing (LB): During this phase, each virtual machine’s load is calculated over
time. Therefore, the load of a VM can be calculated as the total length of tasks at time
(t) on service queue of VMi divided by the service rate of VMi at time t, as given in Eq.
12 [8].

LB[VMi, time(t)] =
TotallengthofTask(T )

ProcessingtimeofVM
(12)

As a final step, the optimization objective function is calculated as follows:

Foptimal = Makespan+ (
RU

M
) + (

LB

M
) + (

TEXEC

N
) (13)

On the basis of all the above, Algorithm 1 illustrates the pseudocode for scheduling tasks
based on the WO algorithm. Algorithm 2 shows the fobj (fitness objective function) used
in Algorithm 1. Figure 4 shows the flowchart of WOTSA for task scheduling.
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Algorithm 1 Pseudocode for WOTSA method
Input: Tasks set, VMs set, the parameters of WOTS algorithm, N (population size) Output: Return
best search
Begin
1. Initialize set of tasks, Task = {Task1, Task2, . . . , Taskn}.
2. Initialize set VMs, VM = {VM1, V M2, . . . , V Mm}.
3. Set the population size and maximum iteration.
4. Set the parameters of WO.
5. t = 1
6. While (t ≤ maximum iteration)
7. For i = 1 to N
8. [Oi]= fobj (walrusi); // Evaluate the fitness values of each walrus using Algorithm 2.
9. Find the best search agent;
10. End for
11. t++;
12. End while
13. Return best solution // The allocation matrix which minimizes the objective function.
End

Algorithm 2 Fitness Objective Function (fobj) Pseudocode
Input: Task, VM, Joblen (task information: task length and task ID), St (waiting time).
Output: Optimal solution (O), Makespan, Resource utilization (RU), Execution cost (EC), Load bal-
ancing (LB).
Begin
1. For each Task
2. Execution time = (Joblen/VM size);
3. End for
4. For each VM
5. EC = ((Execution time/3600) * VM price);
6. Task processing time = (Joblen/(VM size * CPU utilization)) ;
7. End for
8. EC mean = sum (sum (EC)); // Sum all of VMs excution cost.
9. Makespan = min (sum(execution time + St));
10. For m = 1 to size(VM)
11. Utilization (m) = (Joblen / Makespan);
12. End for
13. For each VM
14. LB [VM] = (total length of task/ Task processing time);
15. End for
16. RU mean = (sum (Utilization) / size (VM));
17. O = Makespan + RU mean + average LB + EC mean;
18. Return(O) //The best solution for mapping tasks to VMs is the one that minimizes objective
function.
End
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Figure 4. Flow chart of WOTSA [15].

5 Results Discussion

The performance of the WOTSA evaluated in MATLAB R2018a software on a PC with
Intel(R) Core (TM) i5-8250U CPU with 1.80 GHz, and RAM of 12 GB. The WOTSA
is compared with four well-known meta-heuristic algorithms, FOX (Fox optimizer) [25],
GEO (Golden Eagle Optimizer) [24], ZOA (Zebra Optimization Algorithm) [35], and
STOA (Sooty Tern Optimization Algorithm) [10]. All proposed meta-heuristic algorithms
are evaluated under the same conditions and with the same objective function (the ob-
jective function proposed in this paper).
Scenario 1: Tasks are fixed, but VMs range from 20 to 50. In Table 3, details of the
scenario 1 environmental simulation are presented.
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Figure 5. Makespan comparison (various numbers of VMs).

Table 3. Experiment setup details for scenario 1.

Parameters Value
Number of tasks 100
Population size 30
Number of VMs 20-50
Maximum iteration 100

Figure 6. Resource utilization comparison (various numbers of VMs).

Based on different numbers of VMs and fixed tasks, Figure 5 shows that the WOTSA
has the lowest makespan (about 49%) when the number of VMs is increased. Figure
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Figure 7. Load balancing comparison (various numbers of VMs).

6 illustrates how the algorithms utilize resources. In comparison to FOX, GEO, ZOA,
and STOA, the WOTSA is more efficient. In Figure 7, we compare the degree of load
balancing between different algorithms. According to Figure 8, tasks are allocated to
resources reasonable value and VMs are distributed efficiently.

Figure 8. Execution cost comparison (various numbers of VMs).

Scenario 2: This scenario involves a fixed number of VMs with a variable number of
tasks. There are 200 to 500 tasks. Table 4 shows the parameters for scenario 2.
In Figure 9, we compare the makespan metric between FOX, GEO, ZOA, and STOA
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Table 4. Experiment setup details for scenario 2.

Parameters Value
Number of tasks 200-500
Population size 30
Number of VMs 50
Maximum iteration 100

based on various task counts. There is a better makespan with WOTSA than with other
methods. According to Figure 10, the WO task scheduling algorithm is more efficient than
other meta-heuristic algorithms based on resource utilization. When there are more tasks,
the resource utilization decreases. A WO-based task scheduling algorithm is illustrated in
Figure 11 as having better load balancing. Figure 12 shows that execution costs increase
with increasing task numbers.

Figure 9. Makespan comparison (various numbers of tasks).

Scenario 3: In this scenario, the experiment is run based on the number of iterations.
Table 5 illustrates the parameters of this scenario. Figure 13 shows the convergence

Table 5. Experiment setup details for scenario 2.

Parameters Value
Number of tasks 300
Population size 50
Number of VMs 50
Maximum iteration 1-300

speed of the proposed algorithm and the others. According to the results, the proposed
algorithm outperforms others. Additionally, because the output data were not close to
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Figure 10. Resource utilization comparison (various numbers of tasks).

Figure 11. Load balancing comparison (various numbers of tasks).

one another, the ’z score’ function was used to normalize the data by centered means
and scaling standard deviations. A disadvantage of STOA is its poor exploitation ability,
as can be seen from the figure. ZOA, FOX, and GEO explore the search space in the
first iterations, but fall into the trap of local optimization in later iterations and cannot
achieve global optimization. With increasing iterations, the fitness value of the WOTSA
method diminishes. Due to its trade-off between searching, catching, and handling, WO
is a good choice. The first iteration ensures that WOTSA searches the entire search space
and avoids the local optimal trap, and the last iteration ensures that WOTSA converges
to the best global optimal solution.
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Figure 12. Execution cost comparison (various numbers of tasks).

Figure 13. The algorithm’s convergency.

6 Conclusion

In cloud computing, virtual resources are made available to companies and end users via a
pay-per-use model. The adoption of a task scheduler that maps tasks to VMs optimally is
crucial in cloud computing. Thus, this paper presents a task scheduling algorithm based
on the popular WO algorithm. Four important objectives are simultaneously optimized
with the proposed algorithm, including minimizing makespan, minimizing execution costs,
minimizing load balancing, and maximizing resource utilization. As compared to FOX,
ZOA, STOA, and GEO, the WOTSA algorithm improves makespan, load balancing, cost,
total execution time, resource utilization, and resource load balance. Also, the proposed
algorithm has better convergence compared to other algorithms and avoids falling into
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the local optimal trap. In the future, we intend to consider security, scalability, and
availability as well. In addition, we plan to improve the WO algorithm’s efficiency.
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