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ABSTRACT ARTICLE INFO

Noise is a part of data whether the data is from mea-
surement or experiment. There are a few techniques for
fault detection and reduction to improve the data qual-
ity in recent years some of which are based on wavelet,
orthogonalization and neural networks. In this paper,
we suggest a low cost technique to improve the sig-
nal quality iteratively. In this method, we suggest a
tridiagonal model which in fact describes the noise as a
function of surrounding signal elements. To make the
predicted noise more reliable, the algorithm is equipped
with a learning/feedback approach. More precisely, in
each iteration the most noisy elements are chosen and
a tridiagonal matrix including some random parameters
is suggested to model the larger noise values as a func-
tion of signal values around that entry. Our algorithm
is used for both small and large noise values. We prove
the linear convergence of the proposed algorithm. The
numerical results confirm the efficiency of presented al-
gorithm in most cases in comparison with orthogonal-
ization based method introduced by Chen in 2015.
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1 Introduction

Data analysis is a very common problem in machine learning and signal processing. As-
sume that a quantity X is measured in n different cases and we need to analyze the
provided data. Since the data contains some error, whether it obtained by experiments
or direct measurement tools, we need to detect and reduce the noise before starting any
analysis. Different noise reduction algorithms are suggested with specific applications for
audios or images; see for example [2, 1]. In recent years wavelet and least squares played an
important role in suggested noise reduction algorithms. Chen [4] presented an algorithm
based on noise orthogonalization. He also outlined a novel noise reduction technique by
use of reverse least squares and shaping regularization [4, 8]. Moreover, he developed the
first wavelet based algorithm for noise reduction in 2017 [3]. On the other hand, Huang [5]
provided a singular spectrum analysis for 3D random noise. A few neural network based
algorithms are also suggested for noise detection [6, 7]. There are some complications in
solving noise detection problem such as difficult mathematical modeling, high computa-
tional cost and high sensitivity to noise quality and size. Learning approaches can solve
these issues by following the error trend in consequtive iterations. In each iteration of a
learning algorithm, the current noise estimation is evaluated to suggest a proper update.
In this paper we provide a new algorithm for detecting and reducing the noise which has
benefits over existing methods in some cases. Each iteration of this algorithm consists of
three main steps:
1) It suggests a tridiagonal model for the signal entries with more noisy behavior.
2) The noise is approximated by solving the tridiagonal model.
3) It updates the input signal considering the assumed noise.
Our contributions are as follows: 1) We outline a two phase noise reduction algorithm
which suggests a tridiagonal model to estimate noise, compute an approximated noise-
free signal and check the improvement to verify the quality or revise the noise in each
iteration, 2) The hybrid of regression phase besides the learning phase make the noise
reduction process faster, 3) The complexity of the proposed algorithm is relatively low
and 4) We can substitute the tridiagonal model by any proper matrix structure based on
signal characteristics. We categorized some special cases in Section 3.

2 Our Algorithm

In this section the proposed algorithm is presented. The input is a data array consisting of
noise in some entries and the output is the corrected data. There is no specific condition
for the input structure; however, the best results obtained for scattered noise across most
of the data entries. Now, we present the main steps of the algorithm and its convergence
proof.
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Figure 1: Flowchart of the Low-dimension Tridiagonal (LTD) Algorithm

2.1 Initialization

First, the moving average method is implied to provide a relatively smooth trend. As an
initial value, the noise is assumed to have standard normal distribution. It then goes on
with detecting the most noisy elements from ruined data and trying to reduce the error.

2.2 Approximation Loop

The algorithm enters a while loop that continues as long as the error E is greater than
the specified tolerance and the iteration counter is within a preassumed range. Inside
this loop, the second-order differences of data entries, GT, and its maximum value M is
computed. The elements of GT satisfying bs(DD) − 0.7 ∗ M > 0 are selected and
stored in gt as proper canditates for noise reduction. These elements will be used in
the approximation step. Actually, a tridiagonal system with some arbitrry elements is
designed to decrease the noise. The linear system Tƒ = N is solved to obtain the updated
approximation vector f instead of gt. The error E is updated by calculating the norm
of the difference between f and gt. The counter k is incremented by 1 to keep track of
the number of iterations The Algorithm starts with guessing noise through the simple
idea, moving average and assuming a normal distribution for the noise. These midpoints
will be used in subsequent calculations. It then goes on with detecting the most noisy
elements from ruined data and trying to reduce the error.
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2.3 Approximation loop

The algorithm enters a while loop that continues as long as the error E is greater than
the specified tolerance and the iteration counter is within a preassumed range. Inside
this loop, the second-order differences of data entries, GT, and its maximum value M is
computed. The elements of GT satisfying bs(DD) − 0.7 ∗ M > 0 are selected and
stored in gt as proper canditates for noise reduction. These elements will be used in
the approximation step. Actually, a tridiagonal system with some arbitrry elements is
designed to decrease the noise. The linear system Tƒ = N is solved to obtain the updated
approximation vector f instead of gt. The error E is updated by calculating the norm of
the difference between f and gt. The counter k is incremented by 1 to keep track of the
number of iterations.

2.4 Post-processing and analysis

Once the while loop is finished, the measured values GT are updated by replacing the
selected elements in gt with the corresponding elements from ƒ . This reflects the refined
approximation. The measured values GT are plotted against the exact values Gect to
visualize the approximation and assess the quality of the results; see e.g. Figure 5. The
mean squared errors (mse1 and mse2) between the exact values Gexact and the measured
values Gmesred are also computed and stored in Table 2. These metrics provide a
quantitative assessment of the approximation’s accuracy. The algorithm iterates through
the approximation loop, adjusting the approximation vector ƒ based on the calculated
tridiagonal system around the selected elements from gt. The goal is to refine the ap-
proximation and minimize the error between the measured values and the true values.
The process continues until the error falls below the specified tolerance or the maximum
number of iterations is reached.

2.5 Pseudocode

3 Convergence Analysis

In Theorem 1, we show the linear convergence rate of LTD algorithm, while our numerical
results confirm the superlinear convergence rate.

Theorem 3.1. The LTD algorithm reduce the scattered noise with a linear convergence
rate.

Proof Let assume there a considerable noise in th enrty which cause a large second
difference value between th and + 1th data entries. Substituting the noisy values with
their tridiagonal approximation is in fact equivalent to assume a straight line instead of
the peicewise linear form; see Figure 2. More precisely, in iteration k + 1 we have

ek+1 < λek + (1 − λ)ek−1 ≈ αek.
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Algorithm 1 Limited Tridiagonal Approach for Reducing Scattered Noise

1: procedure LTD(Nn,mydelta, km)
2: Initialize variables and arrays
3: Generate exact data Gexact

4: Create a probability distribution PD with desired characteristics
5: Generate noise data NData based on the distribution
6: Add the noise data to the exact data to obtain GT
7: Calculate midpoint values gm from GT
8: Compute mean and standard deviation of differences between gm and GT
9: Initialize error E and measured data Gmeasured

10: while E > mydelta do
11: Compute second-order differences DD of GT
12: Find the maximum difference M in DD
13: Select elements of GT based on a condition to obtain gt
14: Determine the length n of gt
15: if n > 0 then
16: for k = 1 to km do
17: Generate input values n
18: Compute probability density values N based on PD1
19: Initialize intermediate arrays and variables
20: Perform random-based calculations to update ƒ
21: Construct a tridiagonal matrix T based on d, m, and rho
22: Solve the linear system T · ƒ = N
23: Update error E based on the difference between ƒ and gt
24: end for
25: end if
26: Update the measured data Gmeasured based on gt and ƒ
27: end while
28: Calculate mean squared errors mse1 and mse2
29: Return the final values of ƒ , mse1, and mse2
30: end procedure
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Figure 2: Tridiagonal modeling

Now, we consider three technically important points about the convergence of LTD algo-
rithm:

1. Our numerical results confirm at leats superlinear convergence; see Figure 3.

2. As described in Section 2, in each iteration of LTD algorithm a low-dimension
tridiagonal system is needed to improve the signal quality. To determine the most
noisy elements, we suggest to select the entries with second difference greater than
70 percent of its maximum value as a rule of thumb. Based on our observtions it is
a proper choice in most of the tests.

3. The values of km and δ depends on data size. In Table 1 proper choices are
represented.

Table 1: Suggested parametes
n km δ
100 10 E-06
500 10 E-05
1000 100 E-04
5000 100 E-04
10000 200 E-03

In Section 2 we assumed a tridiagonal model for the noise behavior. Although it works
properly in most tests, there is no force to use the tridiagonal model. Actually, if the
noisy elements are scattered wider, there is no reason to assume the noise concentrated
around the diagonal entries. Hence, five-diagnal system might improve the efficiency.
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Figure 3: Superlinear decrease in error

4 Numerical Results

In this section, we present the numerical results. We implement LTD and MSSA algo-
rithms in MATLAB 2023b on a computer with a 2.4 GHz core i5 CPU and 8Gb RAM.
We then test the codes on real and randomly generated noisy data. To generte random
tests, both rand and randn commands are used for the exact data and a normal noise
is added. In each experiment, the goal is to capture the added noise as fast as possible.
We compare both MSE and time to show the effectiveness of our proposed algorithm in
approximating the noise term more precisely and in lower time. As shown in Figure 4,
it is confirmed that LTD is faster than MSSA. This figure demonstrates the Dolan More
profiles which is in fact a performance ratio and greater value means more test problems
are solved in minimum time.

Figure 4: Dolan More time profiles for LTD and MSSA algorithms

Moreover, the average time and MSE are reported for random tests. To provide more
accurate results we repeat each experiment 20 times and report the average results in
Table 2. As large as the data size is, MSSA tends to outperform our algorithm; however,
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for data size not greater than 1000 LTD has two desirable features including lower MSE
and lower computing time.

Table 2: Time and MSE comparison for LTD and MSSA [4]
n LTD time MSSA time LTD MSE MSSA MSE

100 0.2669 1.1526 0.0813 0.1149
500 0.5703 1.2832 0.0271 0.1198
1000 1.9634 1.4939 0.0164 0.1231
5000 4.7623 3.6403 0.0132 0.1238
10000 21.1465 6.1078 0.0125 0.1246

We also presented Figure 5 to confirm the decreasing behavior of noise. More precisely,
in a test problem of size 60, the difference between measured data and our algorithm
approximation is lower than the exact noise values generated randomly.

Figure 5: Noise reduction process in a test problem with size 60. The left is resulted by
our noise reduction process while the right shows the initial noise which is clearly greater

Finally, our tests on real data extracted from noisy sounds and images shows the efficiency
of our proposed algorithm in reducing scattered noise fast and accurately. In Figure 6
a noisy sound and a noisy image signals are plotted. We note that to provide a one
dimentional data, we substitute the image matrix with its row average.
In Figure 7, the signals are denoised by use of LTD algorithm. It can be easily seen that
our proposed approach successfully reduced these type of scattered noises.

5 Concluding Remarks

Noise reduction was the target of this paper. The most important contribution was to
outline a low computational cost algorithm for detecting small data fluctuations. In our
suggested algorithm two phase are introduced: first was to suggest a local tridiagonal
model around the most noisy entries to detect the noise and the second was to design a
learn/feedback process to decide whether the predicted noise satisfied the necessary qual-
ity conditions in next iterations. According to presented numerical results, the presented
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Figure 6: Two scattered noisy input signals: the left shows the intensity of a noisy sound
and the right shows a row average of a noisy image

Figure 7: Denoised signals described in Figure 6

algorithm was able to detect the small fluctuations with lower men squared error in lower
computational time. Working on optimal parallelization techniques can be suggested for
future research to denoise large scale data sets.
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