
Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

A New Algorithm for Computing the Frobenius
Number

Abbas Taheri∗1 and Saeid Alikhani†2

1Department of Electrical Engineering, Yazd University, 89195-741, Yazd, Iran
2Department of Mathematical Sciences, Yazd University, 89195-741, Yazd, Iran

ABSTRACT ARTICLE INFO

A number α has a representation with respect to the
numbers α1, ..., αn, if there exist the non-negative inte-
gers λ1, ..., λn such that α = λ1α1 + ... + λnαn. The
largest natural number that does not have a represen-
tation with respect to the numbers α1, ..., αn is called
the Frobenius number and is denoted by the symbol
g(α1, ..., αn). In this paper, we present a new algorithm
to calculate the Frobenius number. Also we present the
sequential form of the new algorithm.

Article history:
Research paper

Received 12, February 2024

Accepted 18, September 2024

Available online 20, December
2024

Keyword: Algorithm complexity, Frobenius, Number theory.

AMS subject Classification: 01B39, 11D04.

∗Email:a.taheri@stu.yazd.ac.ir
†Corresponding author: S. Alikhani. Email:alikhani@yazd.ac.ir

Journal of Algorithms and Computation 56 issue 2, December 2024, PP. 68–74

69 A. Taheri/ JAC 56 issue 2, December 2024, PP. 68–74

1 Introduction

Let α1, ..., αn (n ≥ 2) be positive integers with gcd(α1, ..., αn) = 1. Finding the largest
positive integer N such that the Diophantine equation α1x1 + α2x2 + ...+ αnxn = N has
no solution in non-negative integers is known as the Frobenius problem. Such the largest
positive integer N is called the Frobenius number of α1, ..., αn. Various results of the
Frobenius number have been studied extensively. Some of the applications of the Frobe-
nius number are change-making problem, scheduling problems, the complexity analysis of
the Shell-sort method, Petri nets, partition of a vector space, monomial curves, algebraic
geometric codes, titling and generating random vectors. Let explain one the application
in more details. The Frobenius number can be used to model certain scheduling problems.
For instance, if you have tasks with specific durations (represented by the integers), the
Frobenius number can help determine the latest possible completion time for a set of tasks
given their deadlines. We refer the reader to [7] for study of of the applications of the
Frobenius number.
The Frobenius problem is well known as the coin problem that asks for the largest mon-
etary amount that cannot be obtained using only coins in the set of coin denominations
which has no common divisor greater than 1. This problem is also referred to as the
McNugget number problem introduced by Henri Picciotto. The origin of this problem for
n = 2 was proposed by Sylvester (1884), and this was solved by Curran Sharp (1884), see
[6, 9]. Curran Sharp [6] in 1884 proved that g(α1, α2) = α1α2 − α1 − α2.
Let α1, ..., αn be positive integers whose greatest divisor is equal to one, in other words

gcd(α1, ..., αn) = 1.

If S =< α1, ..., αn > is the semigroup generated by α1, ..., αn, then finding g(S) is a
problem and therefore finding the bounds for g(S), whenever we have a certain sequence
of numbers, [4] is of interest. For example, if S is an arithmetic sequence with relative
value d, then we have [5]:

g(a, a+ d, a+ 2d, ..., a+ kd) = a⌊a− 2

k
⌋+ d(a− 1).

Fibonacci sequence is a recursive sequence Fn = Fn−1+Fn−2, n ≥ 3 with F1 = F2 = 1. For
every integer l ≥ i+2, we have g(Fi, Fi+1, Fl) = g(Fi, Fi+1). Assuming gcd(Fi, Fj, Fl) = 1
for the triplet 3 ≤ i < j < l, calculating g(Fi, Fj, Fl) has been considered. Suppose that
i, k ≥ 3 are integers and r = ⌊Fi−1

Fi
⌋. In this case (see [10])

g(Fi, Fi+2, Fi+k) =

(Fi − 1)Fi+2 − Fi(rFk−2 + 1); If r = 0 or r ≥ 1 and

Fk−2Fi < (Fi − rFk)Fi+2,

r(Fk − 1)Fi+2 − Fi((r − 1)Fk−2 + 1) otherwise

It was shown by Curtis [2] that no closed formula exists for the Frobenius number if
n > 2. Because of this reason, there has been a great deal of research into producing

70 A. Taheri/ JAC 56 issue 2, December 2024, PP. 68–74

upper bounds on g(a1, a2, ..., an). These bounds share the property that in the worst-
case they are of quadratic order with respect to the maximum absolute valued entry of
(a1, ..., an). Assuming that a1 ≤ a2 ≤ ... ≤ an holds, such bounds include the classical
bound by Erdős and Graham [3]

g(a1, ..., an) ≤ 2an−1⌊
an
n
⌋ − an,

by Selmer [8]

g(a1, ..., an) ≤ 2an⌊
a1
n
⌋ − a1,

by Vitek [11]

g(a1, ..., an) ≤
1

2
(a2 − 1)(an − 2)− 1,

and by Beck et al. [1]

g(a1, ..., an) ≤
1

2

(√
a1a2a3(a1 + a2 + a3)− a1 − a2 − a3

)
.

In Section 2, we present a new algorithm to compute the Frobenius number. Also we
present the sequential form of the new algorithm in Section 3.

2 Introducing a new algorithm

In this section, we present a new algorithm to calculate the Frobenius number and also
we discuss on the time complexity of this new algorithm.

2.1 New algorithm

We start this section with the following easy theorem:

Theorem 2.1. For the numbers α1 < α2 < ... < αn, we have

g(α1, ..., αn) ≤ g(α1, ..., αn−1) ≤ ... ≤ g(α1, α2).

Proof. By the definition of Frobenius number, all integers strictly greater than g(α1, α2) =
α1α2 − α1 − α2 can be expressed as αixi + αjxj for some xi, xj ∈ Z+. So it follows that
all integers strictly greater than α1α2 − α1 − α2 can be expressed as

∑n
k=1 αkx

k for non-
negative integer xk where k ∈ {1, 2, ..., n}. Therefore, we have the result.

Using the upper bound of Theorem 2.1, we present a new algorithm for calculating Frobe-
nius numbers. More precisely, since g(α1, ..., αn) ≤ g(α1, α2) = α1α2−α1−α2, we compute
the number α1α2−α1−α2 and using our sub-algorithm which we call it HasRep Algorithm
examine the natural numbers less than g(α1, α2) are representable respect to α1, ..., αn or
not. Obviously, the largest number less than α1α2 − α1 − α2 which dose not have a rep-
resentation, is the Frobenius number of α1, ..., αn. After this, by the Algorithm 2.1 which

71 A. Taheri/ JAC 56 issue 2, December 2024, PP. 68–74

Algorithm 2.1: Frob Algorithm
input: L, the list of numbers.
output: The Frobenius number of L

1 F := L[1] ∗ L[2]− (L[1] + L[2]);
2 Flag:=true;
3 for a from F by −1 to L[1] + 1 while flag do
4 Flag := HasRep(a, L);
5 end for
6 return(a+1);
7 End.

we call it Frob Algorithm, we apply the Algorithm 2.2 to compute the Frobenius number
of α1, ..., αn.
We have implemented the new algorithm in the Maple software. We briefly show the
results of the implementation of this algorithm for a few examples in the Table 1. It
should be note that the designed algorithm, unlike some algorithms, is responsible for
any number of numbers.

Algorithm 2.2: HasRep
input: a, L: a number and L list of numbers.
output: ture, if a has a representation with respect to L and false, otherwise.

1 if #L = 2 then
2 flag:= false;
3 if a mod L[2] = 0 then
4 return(true) ;
5 elif a = L[1] ∗ L[2]− L[1]− L[2] then
6 return(false);
7 fi;
8 while a ≥ L[2] and not flag do
9 if a mode L[1] ̸= 0 then

10 a := a–L[2];
11 else
12 return(true);
13 fi;
14 end while;
15 return(false);
16 else
17 if a mode L[−1] = 0 or HasRep(a, L[1..− 2]) then
18 return(true);
19 else
20 flag:= false;
21 while a ≥ L[−1] and not flag do
22 a := a− L[−1];
23 flag := HasRep(a, L[1..− 2]);
24 end while;
25 fi;
26 return (flag) ;
27 fi;
28 End.

2.2 Complexity

In this subsection, we discuss on the time complexity of the HasRep algorithm.
The time complexity of HasRep algorithm is difficult to determine precisely without more
information about the list L and the potential values of a. In the worst case, the outer
while loop in the base case can iterate up to a/L[2] times. The outer while loop in the

72 A. Taheri/ JAC 56 issue 2, December 2024, PP. 68–74

Numbers Frobenius Number
7,11,13 30
53,71,91 899
322, 654, 765 27971
123,1234,12345 71459
151, 157, 251, 711 3019
151, 157, 251, 711, 912 3019
101,109,113,119,121,131,139,149,151,161,163,167,169,187,191,
214,219,238,276,324,345,346,349,387,421,427,444,453,463,525,
530,555,579,580,625,711,719,737,752,787,814,834,856,878,899,
915,937,978,989

426

Table 1: The results of the implementation of proposed algorithm for a few examples

recursive case can iterate up to a/L[−1] times. Each iteration of the outer while loop
involves a recursive call to HasRep, potentially leading to further recursive calls. This
suggests that the time complexity could be exponential in the worst case. To improve the
efficiency, especially for the cases where the same subproblems are encountered repeatedly,
memorization (caching previously computed results) could be implemented.
Now, let analyze the time complexity of the HasRep code.
First we consider the worst-case time complexity analysis. For the base case (#L = 2),
the while loop can iterate at most a/L[2] times. Each iteration involves constant-time
operations (modulo, subtraction, comparisons). Therefore, the time complexity of the
base case is O(a/L[2]).
For the recursive case (#L > 2), the recursive call to HasRep(a, L[1..−2]) can potentially
occur in every iteration of the while loop. The while loop can iterate at most a/L[−1]
times. This leads to a potential exponential number of recursive calls
In general, in the HasRep algorithm, in the first part (when the condition is equal to 2),
the complexity of the algorithm will be O(n/L[2]) and when this condition is not met,
it will be O(2n). The complexity of the Frob algorithm is n times of complexity of the
HasRep algorithm.

3 The sequential form of algorithm

It is interesting that the proposed algorithm can convert to the sequential form, that we
do it in this section. Since the HasRep Algorithm gives YES or NO, we use a function to
give us 0 and 1. We define the function f as follows:

f(α1, R) := ⌊α1

R
− 1

⌊ R
α1
⌋
⌋.

73 A. Taheri/ JAC 56 issue 2, December 2024, PP. 68–74

Note that if R is divisible by α1, then the result of the function f(α1, R) is zero. Otherwise,
the result of the expression is between −1 and 0. Now we define the function H as follows:

H(R, [α1, α2]) := ⌊α1

R
− 1

⌊ R
α1
⌋
⌋⌊α2

R
− 2

⌊ R
α2
⌋
⌋⌊ α1

R− α2

− 1

⌊R−α2

α1
⌋
⌋⌊ α1

R− 2α2

− 1

⌊R−2α2

α1
⌋
⌋...

⌊ α1

R− (⌊ R
α2
⌋ − 1)α2

− 1

⌊
R−(⌊ R

α2
⌋−1)α2

α1
⌋
⌋
⌊
⌊
R− ⌊ R

α2
⌋α2

α1

⌋α1 −R + ⌊ R
α2

⌋α2

⌋
The function H has two variables (two input) which investigate the linear representation
of R with respect to a list. It is obvious that if R has a linear representation with respect
to L, then the value of the function H is 0, otherwise is a number in (−1, 0) or in (0, 1).
Now we define another function which we denote it by N (it inverts the answer of the H
function) as follows:

N(x) =

{
1 if x = 0

0 if {x| − 1 ≤ x ≤ 1;x ̸= 0}

Note that
N(x) := ⌊−|x|⌋+ 1.

Based the Frob Algorithm, we first find the upper bound U and then enter the numbers
from 1 to U into the function N(H(U, [α1, α2])). The numbers that remain have no
representation with respect to the list. But the Frobenius number is the largest among
them, so we can calculate it. If δi := N(H(i, [α1, α2])), then the following theorem gives
the Frobenius number g(α1, ..., αn):

Theorem 3.1. The Frobenius number g(α1, ..., αn) based on the values of δi and function
N(δi) is equal to

g(α1, ..., αn) := (U)(δU) + (U − 1)× (δU−1)N(δU) + · · ·+ (1)(δ1)N(δU)...N(δ2)

We close the paper by the following remark:

Remark 3.2. The function H can be generalized for n numbers, i.e., if δi := N(H(i, [α1, ..., αn])),,
then

H(R, [α1, α2])×H(R, [α1, α2, α3])× ...×H(R, [α1, ..., αn−1])× ⌊αn

R
− 1

⌊ R
αn
⌋
⌋×

⌊ R
αn

⌋∏
i=1

H(R− iαn, [α1, ..., αn−1])

74 A. Taheri/ JAC 56 issue 2, December 2024, PP. 68–74

4 Conclusions

Exact determination of the Frobenius number is a difficult problem in general. There
are only a few cases where the Frobenius number has been exactly determined for any n
variables. In the absence of exact results, research on the Frobenius problem has often
been focused on sharpening bounds on the Frobenius number and on algorithmic aspects.
In this paper, using the upper bound in Theorem 2.1, we presented a new algorithm for
calculating Frobenius numbers. Also we present the sequential form of the new algorithm.
The idea of this algorithm proposed by the first author in 2017 when he was a ninth grade
high school student and presented in the Khwarazmi Youth Festival Competitions.

References

[1] M. Beck, R. Diaz, S. Robins, The Frobenius problem, rational polytopes, and fourier
dedekind sums, Journal of number theory, 96(1) 1–21, 2002.

[2] F. Curtis, On formulas for the Frobenius number of a numerical semigroup, Mathe-
matica Scandinavica, 67(2) 190–192, 1990.

[3] P. Erdős, R. Graham, On a linear diophantine problem of frobenius, Acta Arith-
metica, 21(1) 399–408, 1972.

[4] L. Fukshansky , A. Schürmann, Bounds on generalized Frobenius numbers, Eur. J.
Combin, 32 (3) 361–368, 2011.

[5] J.B. Roberts, Note on linear forms, Proc. Amer. Math. Soc. 7, 465-469, 1956.

[6] W.J. Curran Sharp, Solution to problem 7382 (Mathematics). Educational Time, 41,
1884.

[7] J.L. J.L. Ramırez Alfonsın, The Diophantine Frobenius Problem, Oxford university
press, 2005.

[8] E.S. Selmer, On the linear diophantine problem of frobenius. Journal für die reine
und angewandte Mathematik, (293-294) 1–17, 1977.

[9] J.J. Sylvester, Problem 7382, Mathematical Questions from the Educational Times,
41, 21, 1884.

[10] A. Tripathi, Formulae for the Frobenius number in three variables, J. Number Theory
170, 368-389, 2017.

[11] Y. Vitek, Bounds for a linear diophantine problem of frobenius, Journal of the London
Mathematical Society, 2(1), 79-85, 1975.

