Abdorrasoul Mayyahi; Aghil Yousefikoma; Ali Rangin Kaman; Hesam Maleki
Abstract
An autonomous underwater vehicle (AUV) with less noise and vortices as well as efficient power consumption, is pursued in this research by inspiration of shark swimming. Design, hydrodynamic analysis, modeling, fabrication, navigation, and control of this novel AUV is the main goal of this research. ...
Read More
An autonomous underwater vehicle (AUV) with less noise and vortices as well as efficient power consumption, is pursued in this research by inspiration of shark swimming. Design, hydrodynamic analysis, modeling, fabrication, navigation, and control of this novel AUV is the main goal of this research. Detailed explanation of the test and experiment with a brief overview on fabrication are provided. The transfer function of the system has been extracted from the experimental data. The transfer function is then employed for dynamic analysis and control system development. Zigler-Nickols method is used to predetermine the PID control coefficients. Consequently, small modifications have been done by trial and error. Trajectory control in a 10 cm off the wall and in a 20 cm band in a large swimming pool has been examined by a 3 DOF AUV.