Mohammad Mehdi Montazer Rahmati; Seyyed Jaber Safdari; Hossein Akhgari
Abstract
Holdup was measured at various frequencies, amplitudes, continuous and dispersed phase flow rates for binary systems in a pulsed plate column capable of providing samples at various heights. The binary systems was so selected as to cover a wide spectrum of interfacial tensions. Dispersed phase holdup ...
Read More
Holdup was measured at various frequencies, amplitudes, continuous and dispersed phase flow rates for binary systems in a pulsed plate column capable of providing samples at various heights. The binary systems was so selected as to cover a wide spectrum of interfacial tensions. Dispersed phase holdup was found to increase with height in a logarithmic fashion at conditions away from the flooding point and to become almost invariant with height near flooding conditions. The interfacial tension of the binary system has a large effect on the dispersed phase holdup. In systems having low interfacial tension, a small increase in any of the parameters can increase the holdup significantly and lead to flooding. In systems having high interfacial tension, on the other hand, variations in system parameters do not affect system performance significantly.