Sa'eed Badagh Abadai; Mehdi Moosavi; Jalal Moosavi
Abstract
Mansuri oil field, which is located at the South-West of Iran, has sand production problem and primary analyses proved the existence of this phenomenon in this field. Generally, there are three methods to evaluate the sand production state which are empirical, numerical, mathematical, and physical. Considering ...
Read More
Mansuri oil field, which is located at the South-West of Iran, has sand production problem and primary analyses proved the existence of this phenomenon in this field. Generally, there are three methods to evaluate the sand production state which are empirical, numerical, mathematical, and physical. Considering the numerical capability to analyze complex geometries under high stresses condition, FLAC3D, which is a three-dimensional explicit finite-difference program for engineering mechanics computation, was employed to analyze sand production in this field. First, the numerical model was calibrated using designed physical model and then, producing intervals and their perforations were modeled by numeric software. Its results showed that not only end-perforation instability is not the sole dominant mechanism in sand production, but also the effect of adjacent perforations on each other is more important. In this respect, there is an optimum pressure that causes perforations failure and catastrophic sand production. Mansuri field analyses demonstrated that the downhole pressure at its wells is near predicted optimum pressure and producing intervals are going to catastrophically produce sand.