• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Journal of Algorithms and Computation
Articles in Press
Current Issue
Journal Archive
Volume Volume 51 (2019)
Volume Volume 50 (2018)
Volume Volume 49 (2017)
Volume Volume 48 (2016)
Volume Volume 47 (2016)
Volume Volume 46 (2015)
Volume Volume 45 (2014)
Volume Volume 44 (2013)
Volume Volume 43 (2009)
Volume Volume 42 (2008)
Issue Issue 8
February 2009
Issue Issue 7
January 2009
Issue Issue 6
December 2008
Issue Issue 5
September 2008
Issue Issue 4
August 2008
Issue Issue 3
July 2008
Issue Issue 2
May 2008
Issue Issue 1
April 2008
Volume Volume 41 (2007)
Tabesh, M., Aghaei, A., Abrishami, J. (2013). بررسی نقش عوامل مؤثر بر فراوانی حوادث در لوله‌های اصلی آب رسانی ‌با استفاده از الگوی رگرسیونی ترکیبی. Journal of Algorithms and Computation, 42(6), 691-703.
Masoud Tabesh; Arash Aghaei; Jalil Abrishami. "بررسی نقش عوامل مؤثر بر فراوانی حوادث در لوله‌های اصلی آب رسانی ‌با استفاده از الگوی رگرسیونی ترکیبی". Journal of Algorithms and Computation, 42, 6, 2013, 691-703.
Tabesh, M., Aghaei, A., Abrishami, J. (2013). 'بررسی نقش عوامل مؤثر بر فراوانی حوادث در لوله‌های اصلی آب رسانی ‌با استفاده از الگوی رگرسیونی ترکیبی', Journal of Algorithms and Computation, 42(6), pp. 691-703.
Tabesh, M., Aghaei, A., Abrishami, J. بررسی نقش عوامل مؤثر بر فراوانی حوادث در لوله‌های اصلی آب رسانی ‌با استفاده از الگوی رگرسیونی ترکیبی. Journal of Algorithms and Computation, 2013; 42(6): 691-703.

بررسی نقش عوامل مؤثر بر فراوانی حوادث در لوله‌های اصلی آب رسانی ‌با استفاده از الگوی رگرسیونی ترکیبی

Article 5, Volume 42, Issue 6, December 2008, Page 691-703  XML PDF (582.58 K)
Document Type: Research Paper
Authors
Masoud Tabesh* ; Arash Aghaei; Jalil Abrishami
Abstract
A water distribution network is one of the important parts of infrastructure systems. The efficient management and proactive planning of capital investment of these assets are fundamental for efficient and effective service delivered by water companies. The direct economic costs (i.e. rehabilitation investment, repair costs, water loss, etc.) as well as indirect costs (i.e. service and traffic interruptions, etc.) related to water pipe bursts are rapidly increasing. The ability to predict burst rate in pipes is an important strategic key in order to optimization of rehabilitation decision in water distribution systems. Most networks suffer from lack of enough and reliable data for bursts and failures. In this study basic variables which influence on pipes burst and burst statistical analysis have been identified and evaluated. Then common methods for burst predicting are discussed. In order to identify logical, useful and understandable patterns of breaks data, a data mining methodology named evolutionary polynomial regression (EPR) is described. Starting from a hybrid evolutionary strategy, EPR searches for patterns in data and returns symbolic expressions/models. This approach is demonstrated through a detailed case study. Required data were collected from the Mashhad Water Company which includes both asset and bursts data recorded for year 1384. The whole database was divided into 8 material/diameter classes (from 64 mm to 300 mm). The resulting models for burst prediction in different zones contain explicitly recognizable independent variables. The expression models confirm that pipe age, diameter and length are the most important variables leading to pipe bursts. Also the effects of pressure on pipe burst prediction were implicitly investigated. It was found that pressure is an important parameter which influences number of breaks in a pipe network.
Keywords
Water Distribution Networks; Pipes Failure; data mining; Failure Parameters; Failure Prediction Methods; Evolutionary Polynomial Regression; داده کاوی
Statistics
Article View: 1,505
PDF Download: 602
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

This work is licensed under a Creative Commons Attribution 4.0 International License
Journal Management System. Designed by sinaweb.