Maliheh Hashemipour; Mohammadreza Hooshmandasl; Ali Shakiba
Abstract
An outer connected dominating(OCD) set of a graph $G=(V,E)$ is a set $\tilde{D} \subseteq V$ such that every vertex not in $S$ is adjacent to a vertex in $S$, and the induced subgraph of $G$ by $V \setminus \tilde{D}$, i.e. $G [V \setminus \tilde{D}]$, is connected. The OCD number of $G$ is the smallest ...
Read More
An outer connected dominating(OCD) set of a graph $G=(V,E)$ is a set $\tilde{D} \subseteq V$ such that every vertex not in $S$ is adjacent to a vertex in $S$, and the induced subgraph of $G$ by $V \setminus \tilde{D}$, i.e. $G [V \setminus \tilde{D}]$, is connected. The OCD number of $G$ is the smallest cardinality of an OCD set of $G$. The outer-connected bondage number of a nonempty graph G is the smallest number of edges whose removal from G results in a graph with a larger OCD number. Also, the outer-connected reinforcement number of G is the smallest number of edges whose addition to G results in a graph with a smaller OCD number. In 2018, Hashemi et al. demonstrated that the decision problems for the Outer-Connected Bondage and the Outer-Connected Reinforcement numbers are all NP-hard in general graphs. In this paper, we improve these results and show their hardness for bipartite graphs. Also, we obtain bounds for the outer-connected bondage number.
Dara Moazzami
Abstract
The tenacity of a graph $G$, $T(G)$, is defined by$T(G) = min\{\frac{\mid S\mid +\tau(G-S)}{\omega(G-S)}\}$, where theminimum is taken over all vertex cutsets $S$ of $G$. We define$\tau(G - S)$ to be the number of the vertices in the largestcomponent of the graph $G-S$, and $\omega(G-S)$ be the number ...
Read More
The tenacity of a graph $G$, $T(G)$, is defined by$T(G) = min\{\frac{\mid S\mid +\tau(G-S)}{\omega(G-S)}\}$, where theminimum is taken over all vertex cutsets $S$ of $G$. We define$\tau(G - S)$ to be the number of the vertices in the largestcomponent of the graph $G-S$, and $\omega(G-S)$ be the number ofcomponents of $G-S$. In this paperwe consider the relationship between the minimum degree $\delta (G)$ of a graph and the complexityof recognizing if a graph is $T$-tenacious. Let $T\geq 1$ be a rational number. We first show that if$\delta(G)\geq \frac{Tn}{T+1}$, then $G$ is $T$-tenacious. On the other hand, for any fixed $\epsilon>0$, weshow that it is $NP$-hard to determine if $G$ is $T$-tenacious, even for the class of graphs with $\delta(G)\geq(\frac{T}{T+1}-\epsilon )n$.