Volume 56 (2024)
Volume 55 (2023)
Volume 54 (2022)
Volume 53 (2021)
Volume 52 (2020)
Volume 51 (2019)
Volume 50 (2018)
Volume 49 (2017)
Volume 48 (2016)
Volume 47 (2016)
Volume 46 (2015)
Volume 45 (2014)
Volume 44 (2013)
Volume 43 (2009)
Volume 42 (2008)
Volume 41 (2007)
A note on 3-Prime cordial graphs

R. Ponraj; Rajpal Singh; S. Sathish Narayanan

Volume 48, Issue 1 , December 2016, , Pages 45-55

https://doi.org/10.22059/jac.2016.7939

Abstract
  Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number ...  Read More

Further results on total mean cordial labeling of graphs

R. Ponraj; S. Sathish Narayanan

Volume 46, Issue 1 , December 2015, , Pages 73-83

https://doi.org/10.22059/jac.2015.7926

Abstract
  A graph G = (V,E) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : V (G) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is |evf (i) ...  Read More