**Volume 55 (2023)**

**Volume 54 (2022)**

**Volume 53 (2021)**

**Volume 52 (2020)**

**Volume 51 (2019)**

**Volume 50 (2018)**

**Volume 49 (2017)**

**Volume 48 (2016)**

**Volume 47 (2016)**

**Volume 46 (2015)**

**Volume 45 (2014)**

**Volume 44 (2013)**

**Volume 43 (2009)**

**Volume 42 (2008)**

**Volume 41 (2007)**

#### Author = Kala, R.

Number of Articles: 5

##### $k$-Total difference cordial graphs

*Volume 51, Issue 1 , June 2019, , Pages 121-128*

#####
**Abstract **

Let $G$ be a graph. Let $f:V(G)\to\{0,1,2, \ldots, k-1\}$ be a map where $k \in \mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $\left|f(u)-f(v)\right|$. $f$ is called a $k$-total difference cordial labeling of $G$ if $\left|t_{df}(i)-t_{df}(j)\right|\leq 1$, $i,j \in \{0,1,2, \ldots, ...
Read More
##### $k$-Total prime cordial labeling of graphs

*Volume 50, Issue 1 , June 2018, , Pages 143-149*

#####
**Abstract **

In this paper we introduce a new graph labeling method called $k$-Total prime cordial. Let $G$ be a $(p,q)$ graph. Let $f:V(G)\to\{1,2, \ldots, k\}$ be a map where $k \in \mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $gcd(f(u),f(v))$. $f$ is called $k$-Total prime cordial labeling of ...
Read More
##### k-Remainder Cordial Graphs

*Volume 49, Issue 2 , December 2017, , Pages 41-52*

#####
**Abstract **

In this paper we generalize the remainder cordial labeling, called $k$-remainder cordial labeling and investigate the $4$-remainder cordial labeling behavior of certain graphs.
Read More
##### Remainder Cordial Labeling of Graphs

*Volume 49, Issue 1 , June 2017, , Pages 17-30*

#####
**Abstract **

In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)\rightarrow \{1,2,...,p\}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)\geq ...
Read More
##### Asteroidal number for some product graphs

*Volume 49, Issue 1 , June 2017, , Pages 31-43*