**Volume 55 (2023)**

**Volume 54 (2022)**

**Volume 53 (2021)**

**Volume 52 (2020)**

**Volume 51 (2019)**

**Volume 50 (2018)**

**Volume 49 (2017)**

**Volume 48 (2016)**

**Volume 47 (2016)**

**Volume 46 (2015)**

**Volume 45 (2014)**

**Volume 44 (2013)**

**Volume 43 (2009)**

**Volume 42 (2008)**

**Volume 41 (2007)**

#### Author = A Gayathri

Number of Articles: 4

##### Pair Difference Cordial Labeling of Double Alternate Snake Graphs

*Volume 55, Issue 1 , June 2023, , Pages 67-77*

#####
**Abstract **

In this paper we investigate the pair difference cordial labeling behavior of double alternate triangular snake and double alternate quadrilatral snake graphs.
Read More
##### Pair Difference Cordial Labeling of $m-$ copies of Path, Cycle, Star, and Ladder Graphs

*Volume 54, Issue 2 , December 2022, , Pages 37-47*

#####
**Abstract **

In this paper, we consider only finite, undirected, and simple graphs. The concept of cordial labeling was introduced by Cahit[4]. Different types of cordial-related labeling were studied in [1, 2, 3, 5, 16]. In a similar line, the notion of pair difference cordial labeling of a graph was introduced ...
Read More
##### Pair difference cordial labeling of planar grid and mangolian tent

*Volume 53, Issue 2 , December 2021, , Pages 47-56*

#####
**Abstract **

Let $G = (V, E)$ be a $(p,q)$ graph.Define \begin{equation*}\rho =\begin{cases}\frac{p}{2} ,& \text{if $p$ is even}\\\frac{p-1}{2} ,& \text{if $p$ is odd}\\\end{cases}\end{equation*}\\ and $L = \{\pm1 ,\pm2, \pm3 , \cdots ,\pm\rho\}$ called the set of labels.\noindent Consider a mapping ...
Read More
##### Pair Difference Cordiality of Some Snake and Butterfly Graphs

*Volume 53, Issue 1 , June 2021, , Pages 149-163*