Volume 56 (2024)
Volume 55 (2023)
Volume 54 (2022)
Volume 53 (2021)
Volume 52 (2020)
Volume 51 (2019)
Volume 50 (2018)
Volume 49 (2017)
Volume 48 (2016)
Volume 47 (2016)
Volume 46 (2015)
Volume 45 (2014)
Volume 44 (2013)
Volume 43 (2009)
Volume 42 (2008)
Volume 41 (2007)
4-TOTAL MEAN CORDIAL LABELING OF SOME TREES

R Ponraj; S SUBBULAKSHMI

Volume 56, Issue 1 , August 2024, , Pages 44-54

https://doi.org/10.22059/jac.2024.360730.1200

Abstract
  Let G be a graph. Let f : V (G) → {0, 1, 2,... ,k − 1}be a function where k ∈ N and k > 1. For each edge uv, assign thelabel f (uv) = lf(u)+f(v)2m. f is called a k-total mean cordial labeling of G if |tmf (i) − tmf (j)| ≤ 1, for all i,j ∈ {0, 1, 2,... ,k − 1},where ...  Read More

$4$-total mean cordial labeling of spider graph

R Ponraj; S SUBBULAKSHMI; Prof.Dr M.Sivakumar

Volume 55, Issue 1 , June 2023, , Pages 1-9

https://doi.org/10.22059/jac.2023.92447

Abstract
  Let $G$ be a graph. Let $f:V\left(G\right)\rightarrow \left\{0,1,2,\ldots,k-1\right\}$ be a function where $k\in \mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $f\left(uv\right)=\left\lceil \frac{f\left(u\right)+f\left(v\right)}{2}\right\rceil$. $f$ is called a $k$-total mean cordial ...  Read More

$4$-total mean cordial labeling of union of some graphs with the complete bipartite graph $K_{2,n}$

R Ponraj; S SUBBULAKSHMI; S Somasundaram

Volume 54, Issue 1 , June 2022, , Pages 35-46

https://doi.org/10.22059/jac.2022.88026

Abstract
  Let $G$ be a graph. Let $f:V\left(G\right)\rightarrow \left\{0,1,2,\ldots,k-1\right\}$ be a function where $k\in \mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $f\left(uv\right)=\left\lceil \frac{f\left(u\right)+f\left(v\right)}{2}\right\rceil$. $f$ is called $k$-total mean cordial labeling ...  Read More

$4$-total mean cordial labeling of special graphs

R Ponraj; S SUBBULAKSHMI; S Somasundaram

Volume 53, Issue 1 , June 2021, , Pages 13-22

https://doi.org/10.22059/jac.2021.81169

Abstract
  Let $G$ be a graph. Let $f:V\left(G\right)\rightarrow \left\{0,1,2,\ldots,k-1\right\}$ be a function where $k\in \mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $f\left(uv\right)=\left\lceil \frac{f\left(u\right)+f\left(v\right)}{2}\right\rceil$. $f$ is called $k$-total mean cordial labeling ...  Read More

$4$-total mean cordial labeling in subdivision graphs

R Ponraj; S SUBBULAKSHMI; S Somasundaram

Volume 52, Issue 2 , December 2020, , Pages 1-11

https://doi.org/10.22059/jac.2020.78640

Abstract
  Let $G$ be a graph. Let $f:V\left(G\right)\rightarrow \left\{0,1,2,\ldots,k-1\right\}$ be a function where $k\in \mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $f\left(uv\right)=\left\lceil \frac{f\left(u\right)+f\left(v\right)}{2}\right\rceil$.  $f$ is called $k$-total mean cordial ...  Read More

PD-prime cordial labeling of graphs

R Ponraj; S SUBBULAKSHMI; S Somasundaram

Volume 51, Issue 2 , December 2019, , Pages 1-7

https://doi.org/10.22059/jac.2019.75109

Abstract
  \vspace{0.2cm} Let $G$ be a graph and $f:V(G)\rightarrow \{1,2,3,.....\left|V(G)\right|\}$ be a bijection. Let $p_{uv}=f(u)f(v)$ and\\ $ d_{uv}= \begin{cases} \left[\frac{f(u)}{f(v)}\right] ~~if~~ f(u) \geq f(v)\\ \\ \left[\frac{f(v)}{f(u)}\right] ~~if~~ f(v) \geq f(u)\\ \end{cases} $\\ for all edge ...  Read More