**Volume 56 (2024)**

**Volume 55 (2023)**

**Volume 54 (2022)**

**Volume 53 (2021)**

**Volume 52 (2020)**

**Volume 51 (2019)**

**Volume 50 (2018)**

**Volume 49 (2017)**

**Volume 48 (2016)**

**Volume 47 (2016)**

**Volume 46 (2015)**

**Volume 45 (2014)**

**Volume 44 (2013)**

**Volume 43 (2009)**

**Volume 42 (2008)**

**Volume 41 (2007)**

#### Keywords = Path

Number of Articles: 5

##### k-Remainder Cordial Graphs

*Volume 49, Issue 2 , December 2017, , Pages 41-52*

#####
**Abstract **

In this paper we generalize the remainder cordial labeling, called $k$-remainder cordial labeling and investigate the $4$-remainder cordial labeling behavior of certain graphs.
Read More
##### A note on 3-Prime cordial graphs

*Volume 48, Issue 1 , December 2016, , Pages 45-55*

#####
**Abstract **

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number ...
Read More
##### 4-Prime cordiality of some classes of graphs

*Volume 48, Issue 1 , December 2016, , Pages 69-79*

#####
**Abstract **

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number ...
Read More
##### 3-difference cordial labeling of some cycle related graphs

*Volume 47, Issue 1 , June 2016, , Pages 1-10*

#####
**Abstract **

Let G be a (p, q) graph. Let k be an integer with 2 ≤ k ≤ p and f from V (G) to the set {1, 2, . . . , k} be a map. For each edge uv, assign the label |f(u) − f(v)|. The function f is called a k-difference cordial labeling of G if |νf (i) − vf (j)| ≤ 1 and ...
Read More
##### Further results on total mean cordial labeling of graphs

*Volume 46, Issue 1 , December 2015, , Pages 73-83*