Volume 56 (2024)
Volume 55 (2023)
Volume 54 (2022)
Volume 53 (2021)
Volume 52 (2020)
Volume 51 (2019)
Volume 50 (2018)
Volume 49 (2017)
Volume 48 (2016)
Volume 47 (2016)
Volume 46 (2015)
Volume 45 (2014)
Volume 44 (2013)
Volume 43 (2009)
Volume 42 (2008)
Volume 41 (2007)
k-Remainder Cordial Graphs

R. Ponraj; K. Annathurai; R. Kala

Volume 49, Issue 2 , December 2017, , Pages 41-52

https://doi.org/10.22059/jac.2017.7976

Abstract
  In this paper we generalize the remainder cordial labeling, called $k$-remainder cordial labeling and investigate the $4$-remainder cordial labeling behavior of certain graphs.  Read More

A note on 3-Prime cordial graphs

R. Ponraj; Rajpal Singh; S. Sathish Narayanan

Volume 48, Issue 1 , December 2016, , Pages 45-55

https://doi.org/10.22059/jac.2016.7939

Abstract
  Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number ...  Read More

4-Prime cordiality of some classes of graphs

R. Ponraj; Rajpal Singh; S. Sathish Narayanan; A. M. S. Ramasamy

Volume 48, Issue 1 , December 2016, , Pages 69-79

https://doi.org/10.22059/jac.2016.7941

Abstract
  Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number ...  Read More

3-difference cordial labeling of some cycle related graphs

R. Ponraj; M. Maria Adaickalam

Volume 47, Issue 1 , June 2016, , Pages 1-10

https://doi.org/10.22059/jac.2016.7927

Abstract
  Let G be a (p, q) graph. Let k be an integer with 2 ≤ k ≤ p and f from V (G) to the set {1, 2, . . . , k} be a map. For each edge uv, assign the label |f(u) − f(v)|. The function f is called a k-difference cordial labeling of G if |νf (i) − vf (j)| ≤ 1 and ...  Read More

Further results on total mean cordial labeling of graphs

R. Ponraj; S. Sathish Narayanan

Volume 46, Issue 1 , December 2015, , Pages 73-83

https://doi.org/10.22059/jac.2015.7926

Abstract
  A graph G = (V,E) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : V (G) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is |evf (i) ...  Read More