Volume 56 (2024)
Volume 55 (2023)
Volume 54 (2022)
Volume 53 (2021)
Volume 52 (2020)
Volume 51 (2019)
Volume 50 (2018)
Volume 49 (2017)
Volume 48 (2016)
Volume 47 (2016)
Volume 46 (2015)
Volume 45 (2014)
Volume 44 (2013)
Volume 43 (2009)
Volume 42 (2008)
Volume 41 (2007)
Keywords = Path
Number of Articles: 5
k-Remainder Cordial Graphs
Volume 49, Issue 2 , December 2017, , Pages 41-52
Abstract
In this paper we generalize the remainder cordial labeling, called $k$-remainder cordial labeling and investigate the $4$-remainder cordial labeling behavior of certain graphs. Read MoreA note on 3-Prime cordial graphs
Volume 48, Issue 1 , December 2016, , Pages 45-55
Abstract
Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number ... Read More4-Prime cordiality of some classes of graphs
Volume 48, Issue 1 , December 2016, , Pages 69-79
Abstract
Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number ... Read More3-difference cordial labeling of some cycle related graphs
Volume 47, Issue 1 , June 2016, , Pages 1-10
Abstract
Let G be a (p, q) graph. Let k be an integer with 2 ≤ k ≤ p and f from V (G) to the set {1, 2, . . . , k} be a map. For each edge uv, assign the label |f(u) − f(v)|. The function f is called a k-difference cordial labeling of G if |νf (i) − vf (j)| ≤ 1 and ... Read MoreFurther results on total mean cordial labeling of graphs
Volume 46, Issue 1 , December 2015, , Pages 73-83