A. Ghodousian; Sara Falahatkar
Abstract
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated whereby the feasible region is formed as the intersection of two inequality fuzzy systems and \textquotedblleft Fuzzy Max-Min\textquotedblright \ averaging operator is considered as ...
Read More
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated whereby the feasible region is formed as the intersection of two inequality fuzzy systems and \textquotedblleft Fuzzy Max-Min\textquotedblright \ averaging operator is considered as fuzzy composition. It is shown that a lower bound is always attainable for the optimal objective value. Also, it is proved that the optimal solution of the problem is always resulted from the unique maximum solution and a minimal solution of the feasible region. An algorithm is presented to solve the problem and an example is described to illustrate the algorithm.
A. Ghodousian; Parmida Mirhashemi
Abstract
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated whereby the feasible region is formed as the intersection of two inequality fuzzy systems and “Fuzzy Or” operator is considered as fuzzy composition. It is shown that a ...
Read More
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated whereby the feasible region is formed as the intersection of two inequality fuzzy systems and “Fuzzy Or” operator is considered as fuzzy composition. It is shown that a lower bound is always attainable for the optimal objective value. Also, it is proved that the optimal solution of the problem is always resulted from the unique maximum solution and a minimal solution of the feasible region. An algorithm is presented to solve the problem and an example is described to illustrate the algorithm.
Amin Ghodousian; Ali Babalhavaeji; Elnaz Bashir
A. Ghodousian; Tarane Azarnejad; Farnood Samie Yousefi
Abstract
Minimum and maximum operators are two well-known t-norm and s-norm used frequently in fuzzy systems. In this paper, two different types of fuzzy inequalities are simultaneously studied where the convex combination of minimum and maximum operators is applied as the fuzzy relational composition. ...
Read More
Minimum and maximum operators are two well-known t-norm and s-norm used frequently in fuzzy systems. In this paper, two different types of fuzzy inequalities are simultaneously studied where the convex combination of minimum and maximum operators is applied as the fuzzy relational composition. Some basic properties and theoretical aspects of the problem are derived and four necessary and sufficient conditions are presented. Moreover, an algorithm is proposed to solve the problem and an example is described to illustrate the algorithm.
Amin Ghodousian; shahrzad oveisi
Abstract
In this paper, a linear optimization problem is investigated whose constraints are defined with fuzzy relational inequality. These constraints are formed as the intersection of two inequality fuzzy systems and Schweizer-Sklar family of t-norms. Schweizer-Sklar family of t-norms is a parametric family ...
Read More
In this paper, a linear optimization problem is investigated whose constraints are defined with fuzzy relational inequality. These constraints are formed as the intersection of two inequality fuzzy systems and Schweizer-Sklar family of t-norms. Schweizer-Sklar family of t-norms is a parametric family of continuous t-norms, which covers the whole spectrum of t-norms when the parameter is changed from zero to infinity. Firstly, we investigate the resolution of the feasible region of the problem and studysome theoretical results. A necessary and sufficient condition and three other necessary conditions are derived for determining the feasibility. Moreover, in order to simplify the problem, some procedures are presented. It is proved that the optimal solution of the problem is always resulted from the unique maximum solution and a minimal solution of the feasible region. A method is proposed to generate random feasible max-Schweizer-Sklar fuzzy relational inequalities and an algorithm is presented to solve the problem. Finally, an example is described to illustrate these algorithms.
A. Ghodousian; M. Jafarpour
Abstract
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Dombi family of t-norms is considered as fuzzy composition. Dombi family of t-norms includes ...
Read More
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Dombi family of t-norms is considered as fuzzy composition. Dombi family of t-norms includes a parametric family of continuous strict t-norms, whose members are increasing functions of the parameter. This family of t-norms covers the whole spectrum of t-norms when the parameter is changed from zero to infinity. The resolution of the feasible region of the problem is firstly investigated when it is defined with max-Dombi composition. Based on some theoretical results, a necessary and sufficient condition and three other necessary conditions are derived for determining the feasibility. Moreover, in order to simplify the problem, some procedures are presented. It is shown that a lower bound is always attainable for the optimal objective value. Also, it is proved that the optimal solution of the problem is always resulted from the unique maximum solution and a minimal solution of the feasible region. A method is proposed to generate random feasible max-Dombi fuzzy relational inequalities and an algorithm is presented to solve the problem. Finally, an example is described to illustrate these algorithms.
Amin Ghodousian; Reza Zarghani
Abstract
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Yager family of t-norms is considered as fuzzy composition. Yager family of t-norms is a ...
Read More
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Yager family of t-norms is considered as fuzzy composition. Yager family of t-norms is a parametric family of continuous nilpotent t-norms which is also one of the most frequently applied one. This family of t-norms is strictly increasing in its parameter and covers the whole spectrum of t-norms when the parameter is changed from zero to infinity. The resolution of the feasible region of the problem is firstly investigated when it is defined with max-Yager composition. Based on some theoretical results, conditions are derived for determining the feasibility. Moreover, in order to simplify the problem, some procedures are presented. It is shown that a lower bound is always attainable for the optimal objective value. Also, it is proved that the optimal solution of the problem is always resulted from the unique maximum solution and a minimal solution of the feasible region. A method is proposed to generate random feasible max-Yager fuzzy relational inequalities and an algorithm is presented to solve the problem. Finally, an example is described to illustrate these algorithms
Amin Ghodousian; Mohammadsadegh Nouri
Abstract
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Hamacher family of t-norms is considered as fuzzy composition. Hamacher family of t-norms ...
Read More
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Hamacher family of t-norms is considered as fuzzy composition. Hamacher family of t-norms is a parametric family of continuous strict t-norms, whose members are decreasing functions of the parameter. The resolution of the feasible region of the problem is firstly investigated when it is defined with max-Hamacher composition. Based on some theoretical results, a necessary and sufficient condition and three other necessary conditions are derived for determining the feasibility. Moreover, in order to simplify the problem, some procedures are presented. It is shown that a lower bound is always attainable for the optimal objective value. Also, it is proved that the optimal solution of the problem is always resulted from the unique maximum solution and a minimal solution of the feasible region. A method is proposed to generate random feasible max-Hamacher fuzzy relational inequalities and an algorithm is presented to solve the problem. Finally, an example is described to illustrate these algorithms.