**Volume 55 (2023)**

**Volume 54 (2022)**

**Volume 53 (2021)**

**Volume 52 (2020)**

**Volume 51 (2019)**

**Volume 50 (2018)**

**Volume 49 (2017)**

**Volume 48 (2016)**

**Volume 47 (2016)**

**Volume 46 (2015)**

**Volume 45 (2014)**

**Volume 44 (2013)**

**Volume 43 (2009)**

**Volume 42 (2008)**

**Volume 41 (2007)**

#### Keywords = Wheel

Number of Articles: 7

##### Pair mean cordial labeling of graphs

*Volume 54, Issue 1 , June 2022, , Pages 1-10*

#####
**Abstract **

In this paper, we introduce a new graph labeling called pair mean cordial labeling of graphs. Also, we investigate the pair mean cordiality of some graphs like path, cycle, complete graph, star, wheel, ladder, and comb.
Read More
##### $4$-total mean cordial labeling of union of some graphs with the complete bipartite graph $K_{2,n}$

*Volume 54, Issue 1 , June 2022, , Pages 35-46*

#####
**Abstract **

Let $G$ be a graph. Let $f:V\left(G\right)\rightarrow \left\{0,1,2,\ldots,k-1\right\}$ be a function where $k\in \mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $f\left(uv\right)=\left\lceil \frac{f\left(u\right)+f\left(v\right)}{2}\right\rceil$. $f$ is called $k$-total mean cordial labeling ...
Read More
##### PD-prime cordial labeling of graphs

*Volume 51, Issue 2 , December 2019, , Pages 1-7*

#####
**Abstract **

\vspace{0.2cm} Let $G$ be a graph and $f:V(G)\rightarrow \{1,2,3,.....\left|V(G)\right|\}$ be a bijection. Let $p_{uv}=f(u)f(v)$ and\\ $ d_{uv}= \begin{cases} \left[\frac{f(u)}{f(v)}\right] ~~if~~ f(u) \geq f(v)\\ \\ \left[\frac{f(v)}{f(u)}\right] ~~if~~ f(v) \geq f(u)\\ \end{cases} $\\ for all edge ...
Read More
##### $k$-Total difference cordial graphs

*Volume 51, Issue 1 , June 2019, , Pages 121-128*

#####
**Abstract **

Let $G$ be a graph. Let $f:V(G)\to\{0,1,2, \ldots, k-1\}$ be a map where $k \in \mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $\left|f(u)-f(v)\right|$. $f$ is called a $k$-total difference cordial labeling of $G$ if $\left|t_{df}(i)-t_{df}(j)\right|\leq 1$, $i,j \in \{0,1,2, \ldots, ...
Read More
##### Remainder Cordial Labeling of Graphs

*Volume 49, Issue 1 , June 2017, , Pages 17-30*

#####
**Abstract **

In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)\rightarrow \{1,2,...,p\}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)\geq ...
Read More
##### 4-Prime cordiality of some classes of graphs

*Volume 48, Issue 1 , December 2016, , Pages 69-79*

#####
**Abstract **

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number ...
Read More
##### 3-difference cordial labeling of some cycle related graphs

*Volume 47, Issue 1 , June 2016, , Pages 1-10*