Volume 55 (2023)
Volume 54 (2022)
Volume 53 (2021)
Volume 52 (2020)
Volume 51 (2019)
Volume 50 (2018)
Volume 49 (2017)
Volume 48 (2016)
Volume 47 (2016)
Volume 46 (2015)
Volume 45 (2014)
Volume 44 (2013)
Volume 43 (2009)
Volume 42 (2008)
Volume 41 (2007)
On the J-Tightness of Graphs
Articles in Press, Accepted Manuscript, Available Online from 14 January 2022

https://doi.org/10.22059/jac.2022.85486

Abstract
  We introduce a new invariant vulnerability parameter named “J-Tightness” or “J(G)” for graphs. As a stability measure, its properties along with comparisons to other parameters of a graph are proposed. We show how it is calculated for complete graphs and cycles. We show that J-Tightness ...  Read More

On the J-Tightness of Graphs

Abolfazl Javan; Majid Javan; M. Jafarpour; Dara Moazzami; Ali Moieni

Volume 53, Issue 2 , December 2021, , Pages 57-74

https://doi.org/10.22059/jac.2021.85198

Abstract
  We introduce a new invariant vulnerability parameter named “J-Tightness” or “J(G)” for graphs. As a stability measure, its properties along with comparisons to other parameters of a graph are proposed. We show how it is calculated for complete graphs and cycles. We show that J-Tightness ...  Read More

A Survey on Tenacity Parameter\\Part I

Asieh Khoshnood; Dara Moazzami

Volume 53, Issue 1 , June 2021, , Pages 181-196

https://doi.org/10.22059/jac.2021.81721

Abstract
  If we think of the graph as modeling a network, the vulnerability measurethe resistance of the network to disruption of operation after the failure of certainstations or communication links. In assessing the "vulnerability"of a graph one determines the extent to which the graph retains certainproperties ...  Read More

A note on the approximability of the tenacity of graphs

Vahid Heidari; Dara Moazzami

Volume 52, Issue 2 , December 2020, , Pages 149-157

https://doi.org/10.22059/jac.2020.79270

Abstract
  In this paper we show that, if $NP\neq ZPP$, for any $\epsilon > 0$, the tenacity of graphwith $n$ vertices is not approximable in polynomial time within a factor of$\frac{1}{2} \left( \frac{n-1}{2} \right) ^{1-\epsilon}$.  Read More

Tenacious Graph is NP-hard

Dara Moazzami

Volume 51, Issue 2 , December 2019, , Pages 127-134

https://doi.org/10.22059/jac.2019.75276

Abstract
  The tenacity of a graph $G$, $T(G)$, is defined by$T(G) = min\{\frac{\mid S\mid +\tau(G-S)}{\omega(G-S)}\}$, where theminimum is taken over all vertex cutsets $S$ of $G$. We define$\tau(G - S)$ to be the number of the vertices in the largestcomponent of the graph $G-S$, and $\omega(G-S)$ be the number ...  Read More

Tenacity and rupture degree parameters for trapezoid graphs

Dara Moazzami

Volume 51, Issue 1 , June 2019, , Pages 157-164

https://doi.org/10.22059/jac.2019.71927

Abstract
  Reliability of networks is an important issue in the field of graph and network. Computation of network vulnerability parameters is NP-complete for popular network topologies such as tree, Mesh, Cube, etc.In this paper, we will show that the tenacity and rupture degree parameters for trapezoid graphs ...  Read More

Tenacity and some other Parameters of Interval Graphs can be computed in polynomial time

Dara Moazzami; Niloofar Vahdat

Volume 50, issue 2 , December 2018, , Pages 81-87

https://doi.org/10.22059/jac.2018.69783

Abstract
  In general, computation of graph vulnerability parameters is NP-complete. In past, some algorithms were introduced to prove that computation of toughness, scattering number, integrity and weighted integrity parameters of interval graphs are polynomial. In this paper, two different vulnerability parameters ...  Read More

Vulnerability Measure of a Network - a Survey

Dara Moazzami

Volume 49, Issue 2 , December 2017, , Pages 33-40

https://doi.org/10.22059/jac.2017.7975

Abstract
  In this paper we discuss about tenacity and its properties in stability calculation. We indicate relationships between tenacity and connectivity, tenacity and binding number, tenacity and toughness. We also give good lower and upper bounds for tenacity. Since we are primarily interested in the case where ...  Read More

On the tenacity of cycle permutation graph

D. Jelodar; D. Moazzami; P. Nasehpour

Volume 48, Issue 1 , December 2016, , Pages 37-44

https://doi.org/10.22059/jac.2016.7938

Abstract
  A special class of cubic graphs are the cycle permutation graphs. A cycle permutation graph Pn( α) is defined by taking two vertex-disjoint cycles on n vertices and adding a matching between the vertices of the two cycles.In this paper we determine a good upper bound for tenacity of cycle permutation ...  Read More

A Survey on Stability Measure of Networks

Peyman Nasehpour

Volume 48, Issue 1 , December 2016, , Pages 141-148

https://doi.org/10.22059/jac.2016.7952

Abstract
  In this paper we discuss about tenacity and its properties in stability calculation. We indicate relationships between tenacity and connectivity, tenacity and binding number, tenacity and toughness. We also give good lower and upper bounds for tenacity.  Read More

A Survey On the Vulnerability Parameters of Networks

Mahmood Shabankhah

Volume 48, Issue 1 , December 2016, , Pages 155-162

https://doi.org/10.22059/jac.2016.7955

Abstract
  The analysis of vulnerability in networks generally involves some questions about how the underlying graph is connected. One is naturally interested in studying the types of disruption in the network that maybe caused by failures of certain links or nodes. In terms of a graph, the concept of connectedness ...  Read More