Volume 56 (2024)
Volume 55 (2023)
Volume 54 (2022)
Volume 53 (2021)
Volume 52 (2020)
Volume 51 (2019)
Volume 50 (2018)
Volume 49 (2017)
Volume 48 (2016)
Volume 47 (2016)
Volume 46 (2015)
Volume 45 (2014)
Volume 44 (2013)
Volume 43 (2009)
Volume 42 (2008)
Volume 41 (2007)
Pair mean cordial labeling of graphs

R Ponraj; S Prabhu

Volume 54, Issue 1 , June 2022, , Pages 1-10

https://doi.org/10.22059/jac.2022.87392

Abstract
  In this paper, we introduce a new graph labeling called pair mean cordial labeling of graphs. Also, we investigate the pair mean cordiality of some graphs like path, cycle, complete graph, star, wheel, ladder, and comb.  Read More

$4$-total mean cordial labeling of union of some graphs with the complete bipartite graph $K_{2,n}$

R Ponraj; S SUBBULAKSHMI; S Somasundaram

Volume 54, Issue 1 , June 2022, , Pages 35-46

https://doi.org/10.22059/jac.2022.88026

Abstract
  Let $G$ be a graph. Let $f:V\left(G\right)\rightarrow \left\{0,1,2,\ldots,k-1\right\}$ be a function where $k\in \mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $f\left(uv\right)=\left\lceil \frac{f\left(u\right)+f\left(v\right)}{2}\right\rceil$. $f$ is called $k$-total mean cordial labeling ...  Read More

PD-prime cordial labeling of graphs

R Ponraj; S SUBBULAKSHMI; S Somasundaram

Volume 51, Issue 2 , December 2019, , Pages 1-7

https://doi.org/10.22059/jac.2019.75109

Abstract
  \vspace{0.2cm} Let $G$ be a graph and $f:V(G)\rightarrow \{1,2,3,.....\left|V(G)\right|\}$ be a bijection. Let $p_{uv}=f(u)f(v)$ and\\ $ d_{uv}= \begin{cases} \left[\frac{f(u)}{f(v)}\right] ~~if~~ f(u) \geq f(v)\\ \\ \left[\frac{f(v)}{f(u)}\right] ~~if~~ f(v) \geq f(u)\\ \end{cases} $\\ for all edge ...  Read More

$k$-Total difference cordial graphs

R Ponraj; S.Yesu Doss Philip; R Kala

Volume 51, Issue 1 , June 2019, , Pages 121-128

https://doi.org/10.22059/jac.2019.71773

Abstract
  Let $G$ be a graph. Let $f:V(G)\to\{0,1,2, \ldots, k-1\}$ be a map where $k \in \mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $\left|f(u)-f(v)\right|$. $f$ is called a $k$-total difference cordial labeling of $G$ if $\left|t_{df}(i)-t_{df}(j)\right|\leq 1$, $i,j \in \{0,1,2, \ldots, ...  Read More

$k$-Total prime cordial labeling of graphs

R Ponraj; J Maruthamani; R Kala

Volume 50, Issue 1 , June 2018, , Pages 143-149

https://doi.org/10.22059/jac.2018.68651

Abstract
  In this paper we introduce a new graph labeling method called $k$-Total prime cordial. Let $G$ be a $(p,q)$ graph. Let $f:V(G)\to\{1,2, \ldots, k\}$ be a map where $k \in \mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $gcd(f(u),f(v))$. $f$ is called $k$-Total prime cordial labeling of ...  Read More

k-Remainder Cordial Graphs

R. Ponraj; K. Annathurai; R. Kala

Volume 49, Issue 2 , December 2017, , Pages 41-52

https://doi.org/10.22059/jac.2017.7976

Abstract
  In this paper we generalize the remainder cordial labeling, called $k$-remainder cordial labeling and investigate the $4$-remainder cordial labeling behavior of certain graphs.  Read More

Remainder Cordial Labeling of Graphs

R. Ponraj; K. Annathurai; R. Kala

Volume 49, Issue 1 , June 2017, , Pages 17-30

https://doi.org/10.22059/jac.2017.7965

Abstract
  In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)\rightarrow \{1,2,...,p\}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)\geq ...  Read More